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Zusammenfassung

Modelling of structures on different scales has been a popular subject in the past.
Within such a strategy the structural behaviour is modeled on a macro-level, describing
the structure itself, whereas the material behaviour is modeled on a micro-level. Here
typically RVEs are used. The proper choice of boundary conditions for the RVE is a
difficult task in case of shell structures. It should be mentioned that the correct calcu-
lation of material parameters on the macro level is crucial for any associated nonlinear
analysis. Here, results have been presented for homogeneous and layered structures for
composite materials in [5]. In the present paper we will discuss the influence of mate-
rial nonlinear behaviour, here the elasto-plastic behaviour, within the above described
setting. Typically these calculations are very time consuming, even if the FE-model is
parallelized. Thus we will discuss possibilities to change material models on the struc-
tural model during the loading process, starting with elastic material models without a
second scale and switching to a two-scale approach, where necessary.
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1 Introduction

Finite shell elements which are based on the first–order shear deformation theory are in ge-
neral able to describe the global deformation behaviour of thin plate and shell structures.
However for some stress components only an average shape through the thickness can be
obtained. Various methods have been developed to obtain the complicated local deformation
behaviour in inhomogeneous thin structures. So–called multi–director shell formulations with
an appropriate number of global degrees of freedom at the nodes yield approximate solutions
of the three–dimensional boundary value problem, e.g. [9]. The application of brick elements
or solid shell elements provides likewise a computationally expensive approach, e.g. [7,8]. For
laminates each layer must be discretized with several elements in thickness direction to obtain
satisfactory results. The numerical effort for such a full-scale solution leads for practical pro-
blems to an unreasonable number of unknowns. The enhancement of the displacement field by
layer-wise linear (zig-zag) functions through the thickness, see e.g. [1], could be another option.
Applications for thin shell structures with a complicated 3D-stress state could be photovol-
taic laminates, OLED, PLED devices, piecoeletric devices, thin CFRP-parts of lightweight
structures in aerospace or automotive industry, among many others. In the present paper the
shells are treated as a homogeneous continuum with effective properties obtained through a
homogenization procedure to avoid large-scale computations. A large number of papers exists
on computational homogenization methods for general heterogeneous materials, see e.g. [3,13]
for a survey and new developments. Computational homogenization procedures for thin struc-
tured sheets have been proposed in [2, 4]. The theory in [4] is based on a Reissner–Mindlin
kinematic, whereas in [2] a Kirchhoff-Love kinematic is adopted. Representative volume ele-
ments (RVE) extending through the full thickness of the structure are introduced. At the top
and bottom surfaces of the RVE stress boundary conditions are applied, whereas periodicity
constraints are applied at the lateral surfaces.

Based on these preliminaries the essential features and new aspects of the present formu-
lation are summarized as follows:

(i) The underlying shell formulation based on the Reissner–Mindlin theory with inexten-
sible director field is summarized. A two-scale model is introduced and a variational
formulation and associated linearization for the coupled global–local boundary value
problem is presented.

(ii) For the solution of the two-scale problem a FE2 method for small strains is described.
Quadrilateral elements are used for the discretization of the shell structure, whereas
solid shell elements are applied on the RVE, which extends through the total thickness
of the shell. A relation between in–plane displacements and shell strains is developed
on the lateral surfaces.

(iii) The nonlinear coupled local and global boundary value problems are simultaneously
solved in a Newton iteration scheme.

(iv) An indicator, based on ideas in [12], is developed which allows the switch between diffe-
rent material models. Thus the FE2 method is only used, where it should be necessary.
The approach of changing material models is fully reversible. Thus, unloading is possible.
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2 Two-scale shell model – Theory
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Figure 1. Computational homogenization of a layered
shell

Let B be the three–dimensional Euclidean space occupied by a shell with thickness h in
the reference configuration. With ξi we denote a convected coordinate system of the body.
The thickness coordinate ξ3 = z is defined in the range h− ≤ z ≤ h+, where h− and h+ are the
z−coordinates of the outer surfaces. Thus, an arbitrary reference surface Ω with boundary Γ
is introduced. The shell is loaded statically by loads p̄ in Ω and by boundary forces t̄ on Γσ.
In the following Greek indices range from 1 to 2 and commas denote partial differentiation
with respect to ξα.

Position vectors of the initial reference surface and current surface are denoted by X(ξα)
and x(ξα), respectively. Furthermore, a director D̄(ξα) with |D̄(ξα)| = 1 is introduced as
a vector field perpendicular to Ω. The unit director field d̄(ξα) of the current configuration
is obtained by orthogonal transformations and is a function of the rotational parameters ω̄.
Within the Reissner–Mindlin theory transverse shear strains are accounted for, thus d̄·x,α 6= 0.

Hence, the displacement field follows from the difference of the position vectors in shell
space

ū = ū0 + z (d̄− D̄) ū0 = x−X . (1)

The shell strains are derived from the Green–Lagrangian strain tensor using kinematic as-
sumption (1) and are arranged in a vector as

ε(ū0, ω̄) = [ε11, ε22, 2 ε12, κ11, κ22, 2 κ12, γ1, γ2]
T , (2)

with the membrane strains εαβ, curvatures καβ and transverse shear strains γα, respec-
tively.

According to Fig. 1 a representative volume element (RVE) at an integration point i of a
typical finite shell element is introduced. The domain Bi extends through the total thickness
h of the shell and has the size lx × ly × h.

The displacement field is split in an averaged part ū and a fluctuation part ũ.

u = ū+ ũ (3)
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The averaged displacements ū according to (1) are a linear function of the thickness coor-
dinate, whereas ũ describes warping and thickness change. Hence, the deformation gradient
F = 1+Gradu is defined in a standard way and the Green–Lagrangian strain tensor follows
from E = 1

2
(FTF− 1).

The weak form of equilibrium can now be written with v = [ū0, ω̄,u]T and admissible
variations δv = [δū0, δω̄, δu]T

g(v, δv) =
∫

Ω

(σ · δε− p̄ · δū0) dA−
∫

Γσ

t̄ · δū0 ds+
ne2
∑

e=1

NGP
∑

i=1

1

Ai

∫

Ωi

h+
∫

h−

S : δE µ̄ dz dA = 0 .(4)

Here, σ denotes the vector of stress resultants

σ = [n11, n22, n12, m11, m22, m12, q1, q2]T (5)

with membrane forces nαβ = nβα, bending moments mαβ = mβα and shear forces qα. On
the RVE’s S denotes the Second Piola-Kirchhoff stress tensor with P = FS and the virtual
Green-Lagrangian strain tensor is introduced via δE = 1

2
(δFTF + FT δF). Furthermore ne1

and ne2 denote the number of shell elements without or with a two-scale model introduced.
NGP is the number of Gauss points for each element and Ai = lx ly is the reference area of
the RVE. It holds for the total number of shell elements: ne = ne1 + ne2.

For the finite element formulation of the next section we need to derive the linearization
of eq. (4). With conservative loads p̄ and t̄ one obtains

L [g(v, δv),∆v] := g(v, δv) +Dg ·∆v (6)

where g(v, δv) is given in (4) and

Dg ·∆v =
∫

Ω

(∆σ · δε+ σ ·∆δε) dA+
ne2
∑

e=1

NGP
∑

i=1

1

Ai

∫

Ωi

h+
∫

h−

(∆S : δE+ S : ∆δE) µ̄ dz dA (7)

with ∆σ = D ∆ε, ∆S = C ∆E and ∆δE = 1
2
(δFT∆F+∆FT δF). The material matrix C is

a standard output of a library of constitutive laws in a material description. The linearized
virtual shell strains ∆δε are derived for finite rotations in [11]. The stress resultant vector σ
and the matrix of linearized stress resultants D are specified in the next section.

3 Two-scale shell model – Finite element formulation

We describe a finite element formulation based on a standard displacement method applying
the isoparametric concept. The reference surface of the shell is discretized with ne quadrilateral
isoparametric shell elements

Ωh =
ne1
∑

e=1

Ωe +
ne2
∑

e=1

Ωe , (8)

where the subscript h refers to the finite element approximation. Initial geometry, displa-
cements and rotations are interpolated with bilinear functions NI(ξ, η) which are arranged
in the matrix N. The nodal degrees of freedom are three displacements and two or three
rotations.
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Inserting the interpolation functions for the displacements and virtual displacements into
the linearized weak form (6) considering (4) and (7) yields

L [g(vh, δvh),∆vh] =
ne1
∑

e=1

δvG
e k

G
e ∆vG

e + fGe

+
ne2
∑

e=1






















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δvG

δV1
...

δVi

...
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


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

























kG 0
... 0

... 0

0 KL
1

... 0
... 0

. . . . . .
. . . 0 . . . . . .

0 0 0 KL
i 0 0

. . . . . . . . . 0
. . . . . .

0 0 . . . 0 . . . KL
NGP




























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
















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



∆vG
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∆Vi
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∆VNGP
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












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


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e
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




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


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fG(σi)
FL

1
...
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i
...

FL
NGP















































































e

(9)

The indices G and L refer to the global and local boundary value problems, respectively. The
matrices of the first row in (9) follow from the global part of the linearized weak form. The
element residual vector and the tangential element stiffness matrix read

fG(σi) =
∫

(Ωe)

(BT
σ−NT p̄) dA−

∫

(Γσe)

NT t̄ ds kG(Di) =
∫

(Ωe)

(BTDB+G) dA(10)

where the matrices B and G are derived in [11]. The vector of stress resultants σi and
linearized stress resultants Di are specified below.

The matrices of the second to the last row in (9) are associated with the local boundary
value problems at Gauss points 1 ≤ i ≤ NGP of shell element e and occur only, if a two-scale
model is used.

A local boundary value problem can be defined at Gauss point i

δVT
i (KL

i ∆Vi + FL
i ) =

1

Ai

Ne
∑

e=1

δvT
e (k

L
e ∆ve + fLe ) . (11)

Here, the total number of elements used for the discretization of the RVE is denoted by Ne.
The element residual vector fLe and the tangential element stiffness matrix kL

e read

fLe =
∫

(Ve)

B̃TS dV kL
e =

∫

(Ve)

(B̃TCB̃+ G̃) dV . (12)

where B̃ and G̃ are the virtual strain displacement matrix and the geometrical matrix of
8–noded solid shell elements, respectively.

The element displacement vector ve is now split in a part vΩ which contains the internal
displacements and a part vΓ which contains the boundary displacements of the RVE.

ve =





vΩ

vΓ



 =





va

vb



 =





ae Vi

Ae εi



 (13)

In Eq. (13) ae is the standard assembly matrix and Ae(x, y, z) will be specified in the
following.

Assuming small strains the relation of the boundary displacements to the averaged strains
Ē is written as







ūx

ūy

ūz





 =







Ē11 Ē12 Ē13

Ē21 Ē22 Ē23

Ē31 Ē32 Ē33













x
y
z







.

(14)
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Inserting the relation of the averaged strains to the shell strains

Ē11 = ε11 + z κ11

Ē22 = ε22 + z κ22

Ē33 = 0

Ē12 = Ē21 = ε12 + z κ12

2 Ē13 = 2 Ē31 = 2 ε13 = γ1

2 Ē23 = 2 Ē32 = 2 ε23 = γ2

(15)

into (14) yields with further considerations, see [5],

[

ūx

ūy

]

=

[

ε11 + zκ11 ε12 + zκ12 2 ε13
ε12 + zκ12 ε22 + zκ22 2 ε23

]







x
y
z






(16)

Eq. (16) is now rewritten with the vector of shell strains (2) as

[

ūx

ūy

]

=

[

x 0 1
2
y xz 0 1

2
y z z 0

0 y 1
2
x 0 yz 1

2
x z 0 z

]































ε11
ε22
2ε12
κ11

κ22

2κ12

γ1
γ2































ūI = AI(x, y, z) ε ,

(17)

where the index refers to node I of the considered element e. The matrices AI are submatrices
of Ae introduced in (13)

Ae =



















δ1 A1
...

δI AI

...
δnel Anel



















(2nel×8)

δI =

{

1 if node I has fixed dofs
0 else

(18)

with nel = 8 for 8–noded solid shell elements.
Introducing kαβ and fα with α, β = a, b as submatrices of kL

e and fLe in (11) leads to

δVT
i (KL

i ∆Vi + FL
i )

=
1

Ai

Ne
∑

e=1





δVi

δεi





T 









aT
e kaa ae aT

e kab Ae

AT
e kba ae AT

e kbb Ae





e





∆Vi

∆εi



+





aT
e fa

AT
e fb





e







=
1

Ai





δVi

δεi





T 









K L

LT M









∆Vi

∆εi



+





Fa

Fb











.

(19)

With δVi 6= 0 the internal degrees of freedom ∆Vi can be eliminated from the set of equations
using

K∆Vi + L∆εi + Fa = 0 (20)
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which yields

∆Vi = −K
−1 (Fa + L∆εi) . (21)

With (20) and (21) eq. (19) reduces to

δVT
i (KL

i ∆Vi + FL
i ) = δεTi (Di∆εi + σi) (22)

where

σi =
1

Ai

(Fb − LT K−1Fa) Di =
1

Ai

(M− LT K−1 L) (23)

are the stress resultants and linearized stress resultants of Gauss point i. Finally (22) is
inserted into the linearized coupled global-local boundary value problem (9)

L [g(vh, δvh),∆vh] =
ne1
∑

e=1

δvG
e k

G
e ∆vG

e + fGe

+
ne2
∑

e=1

























δvG

δε1
...

δεi
...

δεNGP

























T

e



















































































kG(Di) 0
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0 D1
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. . . . . .
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(24)

The coupled nonlinear system of equations is simultaneously solved within a Newton iteration
scheme. The iteration is terminated for the actual load step when local equilibrium in all Gauss
points is attained along with the global equilibrium of the shell which is formulated through
the first row of (9) or (24). For further details, see [5].

4 Adaptive Strategy for the use of different material

models

As already said the calculation of structures with a two-scale model is very time consuming.
Thus an interesting strategy could be to use the same 2D nonlinear shell element together
with different material laws at different load levels. Within this paper we have in mind

• Non layered shell structure with linear elastic material law-MAT1 (EL)

• Layered shell structure with elasto-plastic material law-MAT4 (ELPL) ( only for test
reasons)

• Non layered shell structure with a two-scale FE2-model on elements 0 ≤ e ≤ ne2 with
RVE on each Gauss point-MAT8 (RVE + ELPL)

Thus a calculation starts fully elastic with MAT1 (EL) on a non layered structure. During
the loading process a switch to a layered structure with an elasto-plastic material-MAT4
(ELPL) or to a RVE with elasto-plastic material- MAT8 (RVE + ELPL) is introduced. This
switching procedure requires an indicator to decide if a material change is necessary. In earlier
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times the indicator of [12] has been successfully used in different applications for an adaptive
mesh refinement. A typical formulation is

∫

∆ST∆S dA ≥ α‖Eσ‖ , (25)

where ‖Eσ‖ is an averaged system energy based on FE-stresses SGP calculated at Gauss points

‖Eσ‖ =
1

ne

ne
∑

e=1

∫

ST
GPSGP dA . (26)

Based on a standard FE-smoothing procedure nodal stresses SN could be provided, which can
be used to calculate stress differences ∆S = SN − SGP on each element e. If the first term in
Eq. (25) is larger then the second one a mesh refinement will be necessary. Typical α = 0.05
can be used, which means that an error of 5% is admissible in one element.

In the same sense one could introduce similar expressions within a nonlinear elasto-plastic
model. A first attempt is the simple model

∫

S2
V dA ≥ α‖Eσ‖ and ‖Eσ‖ =

1

ne

ne
∑

e=1

∫

Y 2
0 dA (27)

with a yield stress Y0 and the equivalent stress SV =
√

S2
11 − S11 S22 + S2

22 + 3S2
12. Now, if

the first term exceeds the second one a change of the material model will be necessary. Typical
α = 0.9 is a possible choice, which means the elastic domain is admissible in one element up
to 90% of the yield stress. The material model is changed for the whole element, if the above
described condition is violated once during the loops on layers and Gauss points. In case of
the elasto-plastic material, stresses are calculated naturally at each layer. Using the two-scale
model the output of the RVE are stress resultants, see Eqs. (5, 23). Thus the stress values at
top and bottom of the shell have to be calculated in a standard way via

Sii+ =
nii

h
+

mii

Ii
z+ , Sii− =

nii

h
+

mii

Ii
z− . (28)

Using the above strategy in a parallelized FE-code needs a dynamic parallelization of the
element loop. Thus a balancing of the workload of each processor is necessary due to the fact
that elements with elastic material behaviour as well as elements with another elasto-plastic
FE-model on each Gauss-point occur.

LOOP, Load

LOOP, Iteration(Newton)

LOOP, Element (Stiffness matrix and residual)

N-Processors
in parallel due to work load

P-01 P-02 P-03

NEXT, Element

SOLVE KT∆V = −R with Parallel-Solver
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NEXT, Iteration

NEXT, Load

Further informations on the parallelization of an element loop in a FE-code may be found
e.g. in [6].

5 Unloading

Special attention has to be set on possible unloading behaviour. Typically the process of
changing the material model should be reversible. Thus a switch back to a fully elastic material
model must be possible. Having in mind that elasto-plastic strains have been reached earlier
a general material model σep = D(ε − εp) for the stress resultants is necessary. Hence the
question is how to calculate elasto-plastic shell strains εp and elasto-plastic stress resultants
σep.

For the elasto-plastic material- MAT4 (ELPL) one can calculate the stress resultants σep

in a loop over all layers at each Gauss point from the 3D-stresses Sep.

σep = 0 ,Dep = 0
i = 1, nlay
→ Ei = εm + ziκ
← Si ep = Ci epEi store for i : Ei p, Ei v

σep = σep +
∫

z

Si ep dzi

Dep = Dep +
∫

z

Ci ep dzi

end i

(29)

In case of the two-scale model-MAT8 all shell values are calculated directly on the RVE
at each Gauss point.

→ ε = [εm,κ,γ]
← σep = [Nep,Mep,Qep] store on RVE: Ep, Ev

← Dep

(30)

Thus, in case of unloading, the elasto-plastic strains

εp = ε−D−1
ep σep (31)

are stored in a history array and the switch to the fully elastic material-MAT1 can be done
via

σ = D(ε− εp) (32)

6 Examples

The developed algorithms are implemented in an extended version of the general finite element
program FEAP [10]. With the first example we compare the finite element solutions for a
Two-span girder subjected to concentrated loads with analytical expressions. The same is
done within the second example for a square plate.
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6.1 Two-span girder with single loads

For the first example we choose a simple Two-span girder with single loads. The length
is given with L = 100 cm and the cross section data are B = 10 cm, H = 2 cm. The
external loading is given by two 2 single loads F = f · B = 1 kN. For the material law we
introduce a classical elasto-plastic material behaviour including linear hardening. We choose
the elasticity modulus E = 21000 kN/cm2, Poisson’s ratio ν = 0.3, initial yield strength
Y0 = 30 kN/cm2 and the hardening modulus Cp = E/10000 kN/cm2. An analytical solution
(without hardening) including unloading is available on the basis of a plastic hinge theory.
The distribution of the bending moments in the ultimate load case is presented in Figure 2
with 3 plastic hinges.

Figure 2. Bending moments of 2-span girder with
single loads

The associated finite element discretization is presented in Figure 3, taking into account
that symmetry conditions could be used. The mesh is chosen with 40 4-node shell elements in
length direction and 4 elements in transverse direction, respectively. The element formulation
is based on a finite rotation theory including an interface to different 2D- and 3D-material
formulations, for details see [11].

f = 0.1

L = 100

L = 100

B=10

Figure 3. FE-discretization of the symmetric part 2-span girder with
single loads

In Figure 4 load deflection curves are presented. These are depicted for the single load
versus the vertical displacement under the single load. Curves are shown based on an analytical
solution from the plastic hinge beam theory with Fpht = Y0(BH2/6L)(4 + 1) = 9 kN. First
results are from a FE-model shell with elasto-plastic material behaviour (MAT4) and 11
layers in thickness direction. Second results are from a shell formulation with a multi-scale
FE2 approach (MAT8), see [5], describing the macroscopic behaviour on the shell model
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and the elasto-plastic material behaviour (MAT4) on a representative volume model (RVE),
introduced at each Gauss point on the shell level. The RVE has a size of lx = ly = h and a
discretization of 4 × 4 × 11 solid shell elements, see [8]. Finally, for comparison, we present
results introducing a 3D FE-model, again with the solid shell element mentioned before. Here,
we choose for the 3D-mesh 11 elements in thickness direction. All results are very close together
in the elastic range. Due to different geometrical discretization models slightly different results
occur, especially in the plastic range, which leads to the same unloading behaviour starting
from different points.
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Figure 4. Load deflection curves for different models without changing the ma-
terial model

Figure 5 depicts two load deflection curves when using the change of material models based
on the above introduced error indicator. These curves are on one hand for the switch between
elastic(MAT1) and elasto-plastic material behaviour (MAT4) and on the other hand for the
switch between elastic (MAT1) and elasto-plastic material behaviour (MAT4) on a represen-
tative volume model (RVE). Both curves are in perfect agreement with load deflection curves
without changing the material models. Presenting the unloading behaviour demonstrates, that
the material switching procedure holds in both directions. The distribution of material models
on the FE-mesh is visualized in Figure 6. Here, we can see finite elements with elastic(red) and
elasto-plastic material(blue) on the RVE at load levels for F=6/7/8/9/9.25/9.5/9.25/9.0 kN.
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Figure 5. Load deflection curves for different models with change of the material
model

Figure 6. Elements with elastic (red) and elasto-plastic material (blue) at different
load levels for F=6/7/8/9/9.25/9.5/9.25/9.0 kN (top to bottom, left to
right)
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6.2 Square plate with uniform load

With the second example we discuss the elasto-plastic behaviour of a simply supported square
plate with uniform load, see Figure 7. The length is given with Lx = Ly = 200 cm and the
thickness is h = 4 cm. The external uniform load is given by q = 1 N/cm2. For the material law
we introduce again a classical elasto-plastic material behaviour including linear hardening with
material parameters of the last example, but with an initial yield strength of Y0 = 36 kN/cm2.

x

y
q L

L

Figure 7. Simply supported square plate with uni-
form load

For the associated finite element discretization a mesh with 40 4-node shell elements,
is chosen in both directions. Possible symmetry conditions are not taken into account. In
Figure 8 load deflection curves for the value of the uniform load versus the vertical center
displacement are presented. An analytical solution (without hardening) is available on the
basis of a yield line theory with qylt = 6Y0 · (h/Lx)

2 = 86.4 N/cm2. First results are from
a FE-model shell with elasto-plastic material behaviour (MAT4) and 11 layers in thickness
direction. Second results are from a FE-model shell with a multi-scale FE2 approach (MAT8)
describing the macroscopic behaviour on the shell model and the elasto-plastic material be-
haviour (MAT4) on a representative volume model (RVE), introduced at each Gauss point on
the shell level. The RVE has a size of lx = ly = h and a discretization of 4× 4× 5 solid shell
elements. Finally, for comparison, we present 3D-results using the solid shell element. Here,
we choose for the 3D-mesh 5 elements in thickness direction. Associated element types have
been described in the example before. All results are very close together in the elastic range.
Due to different geometrical discretization models slightly different results occur, especially in
the plastic range, which leads to the same unloading behaviour starting from different points.
The different use of material models on the FE-mesh is visualized in Figure 9. The distri-
bution of finite elements with elastic (red) and elasto-plastic material (blue) on the RVE is
presented at load levels q=40/50/60/80/82.5/87.5/82.5/80/77.5 N/cm2 (top to bottom, left
to right). The typical behaviour with plastic effects along the diagonals (’yield lines’) can be
seen clearly.
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Figure 8. Load deflection curves for different discretizations and material mo-
dels.

7 Conclusions

In this paper a multi-scale approach for shell structures is presented. With respect to shells
the introduced RVE on the element Gauss point has a natural thickness h. This requires the
formulation of special boundary conditions. The total set of equations contain equilibrium
formulations on the structural level as well as on the level of Gauss points. It is possible to
solve the whole set of equations simultaneously. Basically the formulation allows the mixture
of element concepts. We have shown that it is possible to mix elements with conventional
material description with elements, where RVE’s are introduced to describe the material
behaviour. Calculations based on a multi-scale approach are very time consuming. Thus an
adaptive strategy has been introduced to switch automatically between different discretization
and material models. For this an indicator in dependence on the indicator of [12] has been
proposed. The examples show the efficient practical applicability of the proposed method, also
in the unloading regime. Further research may be focused on the formulation of indicators to
switch between different material models.
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Figure 9. Elements with elastic (red) and elasto-plastic material (blue) at different
load levels for q=40/50/60/80/82.5/87.5/82.5/80/77.5 N/cm2 (top to bot-
tom, left to right)
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