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A Continuum Based 3D–Shell Element

for Laminated Structures

S. Klinkel, F. Gruttmann and W. Wagner
Institut für Baustatik, Universität Karlsruhe, Kaiserstr. 12, D-76131 Karlsruhe

Abstract

In this paper a continuum based 3D–shell element for the nonlinear analysis of laminated
shell structures is derived. The basis of the present finite element formulation is the stan-
dard 8–node brick element with tri–linear shape functions. Especially for thin structures
under certain loading cases the displacement based element is too stiff and tends to lock-
ing. Therefore we use assumed natural strain and enhanced assumed strain methods to
improve the relative poor element behaviour. The anisotropic material behaviour of lay-
ered shells is modeled using a linear elastic orthotropic material law in each layer. Linear
and nonlinear examples show the applicability and effectivity of the element formulation.

Keywords: nonlinear 3D–shell formulation, composite material, enhanced assumed strains,
assumed natural strains

1 Introduction

In structural mechanics the efficient computation of thin structures requires reliable and
robust elements. In the past several shell elements have been developed, where the normal
stresses in thickness direction have been included in the underlying variational formulation.
For these types of elements a discretization of the reference surface is necessary. The
nodal parameters are the displacement vector and the extensible director vector of the
reference surface. The direct interpolation of the extensible director vector is proposed in
several papers, see e.g. Büchter, Ramm, Roehl [1], Betsch, Stein [2], Eberlein, Wriggers [3],
Bischoff, Ramm [4]. The multiplicative decomposition of the director field into a rotational
part and a scalar stretching part has been investigated e.g. by Simo, Rifai, Fox [5], Betsch,
Gruttmann, Stein [6] or Steinmann, Betsch, Stein [7]. The stresses are computed from a
three–dimensional material law. This feature is especially useful for complicated nonlinear
constitutive equations. The condition of vanishing thickness stresses for thin structures
is approximately fulfilled within the weak formulation. Locking effects which occur when
using a three–dimensional material law along with constant normal thickness strains can
be avoided by application of the enhanced assumed strain method to the thickness strains,
see [1].

The associated variational formulation of this method has been developed by Simo and
Rifai [8]. For linear membrane elements the formulation is identical to the method of in-
compatible modes introduced by Wilson et al. [9]. Further aspects for linear applications
are discussed in Andelfinger, Ramm [10], Korelc, Wriggers [11]. Geometrical nonlinear-
ity has been included for two–dimensional problems by Simo and Armero [12] and for
three–dimensional finite deformations by Simo, Armero, Taylor [13]. These elements are



compared for finite plasticity with shell elements by Wriggers, Eberlein and Reese in [14].
Formulation in terms of the Green–Lagrangean strain tensor may be found in Li, Crook,
Lyons [15], Betsch, Gruttmann, Stein [6] and Klinkel, Wagner [16].

However, for certain problems nodal degrees of freedom at the surface of the shell are
more advantageous. Examples are deformation processes with contact and friction and
the delamination problem of layered shells. For this purpose surface oriented shell elements
have been developed e.g. by Schoop [17], Parisch [18], Miehe [19].

In this paper a continuum based 3D-shell element for laminated structures is derived. The
essential features and novel aspects of the present formulation are summarized as follows.

(i) The basis of the present element formulation is an eight–node brick element with
tri–linear shape functions and displacement degrees of freedom. Thus, there are no
rotational degrees of freedom and also no need for complicated update of a rotation
tensor. In contrast to shell elements with rotational degrees of freedom no problems
of soft or hard support will be encountered. Boundary conditions at the top or bot-
tom surface of the brick–type shell element can be considered. Another advantage
of the continuum based shell element is the compatibility of the data structure to
three–dimensional CAD software which can be supported by standard mesh gener-
ators. Furthermore our element provides a correct description of the interlaminar
shear and normal stresses with a sufficient mesh refinement in thickness direction.
This is e.g. useful for a subsequent delamination analysis.

(ii) The relative poor behaviour of a standard displacement element is improved using
the assumed strain method and the enhanced strain method. Thus, the interpolation
with special functions for the transverse shear strains and thickness strains requires
a representation with convective coordinates. Due to this feature the element ori-
entation has to be considered within the mesh generation. To avoid shear locking
the assumed natural strain method introduced by Hughes, Tezduyar [20] and Bathe,
Dvorkin [21] is applied to the transverse shear strains. Our numerical investigations
show, that it is sufficient to define four collocation points in the middle plane of the
element. Furthermore the thickness strains are approximated using special interpo-
lation functions introduced in [2] for a shell formulation with an extensible director
vector. This is necessary to avoid artificial thickness strains. Again for the present
element, the interpolation is applied in the middle plane of the element.

(iii) The membrane behaviour and the bending behaviour is essentially improved applying
the enhanced assumed strain method to the membrane strains and to the thickness
strains. The associated variational formulation is written in a Lagrangean setting
using the Green–Lagrangean strain tensor. This yields a geometric stiffness matrix
which is identical with the pure displacement formulation and therefore is simpler
than the corresponding formulation in terms of the material deformation gradient,
[19].

(iv) With restriction to physical linear behaviour we implement a hyperelastic, orthotropic,
three-dimensional constitutive equation of the St. Venant–Kirchhoff type. Hence the
components of the constitutive tensor are given with respect to the convective co-
ordinate system. In shell theory thickness integration of the stresses and linearized
stresses yields the stress resultants and the shell stiffness. For layered structures
one obtains the so–called laminate stiffness, see e.g. Wagner, Gruttmann, [22]. Un-
like to [18] stress resultants are not introduced in this paper. Here, virtual work
expressions and associated linearizations are integrated in thickness direction. This
simplifies the finite element formulation. For the continuum based 3D–shell element
a general integration algorithm for composite materials is applied.



The outline of the paper is as follows. In section 2–4 we present the kinematic, the material
law, and the variational equations of a 3D–shell formulation with convective coordinates.
The associated finite element is described in section 5. A special technique, which is
necessary for integration through the layers in the 3D–case, is given in section 6. Finally
we show in section 7 the applicability of the element formulation with four linear and
nonlinear examples.

2 Kinematic of a convective 3D – Formulation

According to Fig. 1 convective coordinates are introduced to describe the stress and strain
tensors. We consider thin shell structures with ξ3 as thickness coordinate and ξ1 and ξ2

as inplane coordinates. Thus, the thickness strains, the transverse shear strains and the
corresponding stress components are clearly defined. This is important for the subsequent
finite element formulation.

Figure 1: Curvilinear coordinates and convective base vectors of the reference configuration
and the current configuration

The position vectors of the reference configuration and the current configuration are de-
noted by X and x, respectively. The covariant base vectors are obtained by partial deriva-
tives of the position vectors with respect to the convective coordinates ξi

Gi =
∂X
∂ξi

, gi =
∂x
∂ξi

, i = 1, 2, 3 (1)

whereas the contravariant base vectors are defined in a standard way by Gi ·Gj = δj
i and

gi · gj = δj
i . Hence the deformation gradient is given by

F = gi ⊗ Gi . (2)

This leads to the following representation of the Green–Lagrangean strain tensor

E = Eij Gi ⊗ Gj with Eij =
1
2

(gij − Gij) . (3)

Here gij = gi ·gj and Gij = Gi ·Gj are the metric coefficients of the current configuration
and of the reference configuration, respectively.

3 Material law

In this paper a linear relation between the second Piola–Kirchhoff stress tensor S =
Sij Gi ⊗ Gj and the Green–Lagrangean strain tensor E = Eij Gi ⊗ Gj is postulated

S = C : E . (4)

The constitutive behaviour of laminated composites can be described using an orthotropic
or transversal isotropic material law. For that purpose we define a local orthonormal basis



system Ti in the reference configuration, see Fig. 2. Here, T3 is the normal vector of the
fibre plane and T1 describes the fibre direction.

Figure 2: Orthonormal base system Ti in the reference configuration

The strain tensor E can be written with respect to the base systems Gi and Ti

E = Eij Gi ⊗ Gj = Ēij Ti ⊗ Tj . (5)

With Ti · Tk = δik we obtain the transformation

Ēkl = (Tk · Gi)Eij(Gj · Tl) . (6)

Following common usage in the finite element literature we order the components of E in
a vector

E = [E11, E22, E33, 2E12, 2E13, 2E23]T , (7)

thus equation (6) yields
Ē = TE E . (8)

Introducing tki = Tk · Gi the transformation matrix TE is given by

TE =




(t11)2 (t12)2 (t13)2 t11t12 t11t13 t12t13
(t21)2 (t22)2 (t23)2 t21t22 t21t23 t22t23
(t31)2 (t32)2 (t33)2 t31t32 t31t33 t32t33
2t11t21 2t12t22 2t13t23 t11t22 + t12t21 t11t23 + t13t21 t12t23 + t13t22
2t11t31 2t12t32 2t13t33 t11t32 + t12t31 t11t33 + t13t31 t12t33 + t13t32
2t21t31 2t22t32 2t23t33 t21t32 + t22t31 t21t33 + t23t31 t22t33 + t23t32




.

(9)
The constitutive matrix for orthotropic material behaviour is given here in the inverse
form

C̄−1 =




1
E1

−ν12
E1

−ν13
E1

0 0 0

−ν12
E1

1
E2

−ν23
E2

0 0 0

−ν13
E1

−ν23
E2

1
E3

0 0 0

0 0 0 1
G12

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G23




(10)

with the engineering constants Ei, Gij and νij . The components of C̄−1 and C̄ refer to
the orthonormal base system Ti. For transversal isotropic material behaviour E2 = E3,
ν12 = ν13 and G12 = G13 holds, if T1 is the normal vector of the plane of isotropy. Since
the stored energy W0S is an invariant quantity

W0S =
1
2

ĒT C̄Ē =
1
2

ET CE (11)

holds. Here, C is the constitutive matrix which refers to the convective coordinate system
Gi. Considering equation (8) one obtains

C = TE
T C̄TE . (12)

This completes the computation of the stress tensor with respect to the convective base
system.



4 Variational formulation

The below presented enhanced assumed strain method is based on a three field variational
formulation introduced by Simo, Rifai [8]. Within a geometrical nonlinear formulation
Simo, Amero [12] and Simo, Amero, Taylor [13] applied this method using the enhanced
displacement gradient. In contrast to that we follow the approach in [6] and [16]. Thus,
the compatible Green–Lagrange strain tensor E is enhanced as follows

Ê = E + Ẽ (13)

where Ẽ describes the enhanced part.

The body is loaded by surface loads t̂ and volume forces ρ0b̂. The variational framework
for the enhanced assumed strain method is the following three field variational functional
in a Lagrangean formulation

Π(u, Ẽ, S̃) =
∫
B0

(W0S(E + Ẽ) − S̃ : Ẽ) dV −
∫
B0

ρ0b̂ · udV −
∫

∂B0

t̂ · udA . (14)

The first term describes the internal potential, while the last two terms denote the potential
of the external forces. Here u, Ẽ and S̃ are independent tensorial quantities. Thus, the first
variation of the functional (14) is obtained via the directional derivative or the so-called
Gâteaux derivative as

δΠ =
∫
B0

∂W0S

∂Ê
: δEdV −

∫
B0

ρ0b̂ · δudV −
∫

∂B0

t̂ · δudA

+
∫
B0

(
∂W0S

∂Ê
− S̃) : δẼdV

−
∫
B0

δS̃ : ẼdV = 0 .

(15)

The first variation of the Green–Lagrangean strain tensor reads

δE =
1
2
(gi · δgj + δgi · gj)Gi ⊗ Gj . (16)

Introducing the orthogonality condition for the stress field S̃ and the enhanced strain field
Ẽ ∫

B0

S̃ : ẼdV = 0 (17)

the weak form of the boundary value problem is reduced to a two field problem∫
B0

∂W0S

∂Ê
: δE dV −

∫
B0

ρ0b̂ · δu dV −
∫

∂B0

t̂ · δu dA +
∫
B0

∂W0S

∂Ê
: δẼ dV = 0 . (18)

The nonlinear eq. (18) is solved iteratively within the finite element method. For this
purpose one needs the corresponding linearization, see also [6] and [16]

D[δΠ] · (∆u, ∆Ẽ) =
∫
B0

(δE :
∂2W0S

∂Ê2
: ∆E +

∂W0S

∂Ê
: ∆δE) dV

+
∫
B0

δE :
∂2W0S

∂Ê2
: ∆Ẽ dV +

∫
B0

δẼ :
∂2W0S

∂Ê2
: ∆E dV

+
∫
B0

δẼ :
∂2W0S

∂Ê2
: ∆Ẽ dV .

(19)



Here, the linearized virtual Green–Lagrange strain tensor reads

∆δE =
1
2
(∆gi · δgj + δgi · ∆gj)Gi ⊗ Gj . (20)

In the following the stresses obtained by partial derivatives from the strain energy function
are denoted by S = ∂W0S/∂Ê.

5 Finite element formulation

In the first part of this section we introduce the formulation of a standard displacement
type element. Hence certain modifications are necessary to reduce the locking effects. To
avoid shear locking the transverse shear strains are approximated using the interpolation
functions of Bathe and Dvorkin [21]. Artificial thickness strains can be avoided using
the interpolation functions of Betsch and Stein [2]. Furthermore the enhanced strains are
specified with a different number of independent parameters.

5.1 Displacement type formulation

According to the isoparametric concept we use the standard tri–linear shape functions for
an eight–node solid element to interpolate the geometry of the reference and the current
configuration

Xh =
nel∑
I=1

NI(ξ1, ξ2, ξ3)XI xh =
nel∑
I=1

NI(ξ1, ξ2, ξ3)xI , (21)

with nel = 8 and

NI(ξ1, ξ2, ξ3) =
1
8
(1 + ξ1

I ξ1)(1 + ξ2
I ξ2)(1 + ξ3

I ξ3) . (22)

Here, the index h is used to denote the finite element approximation. The convective base
vectors follows from eq. (1)

Gh
i =

nel∑
I=1

NI,i XI gh
i =

nel∑
I=1

NI,i xI (23)

and the approximation of the virtual strains is given by

δEh =
nel∑
I=1

BIδvI BI = [Bm
I , Bs

I ]
T . (24)

Here, δvI denotes the virtual nodal displacement vector where the components are given
with respect to the fixed Cartesian basis system. The matrices Bm

I and Bs
I are specified

below. The expression S : ∆δEh leads to the geometrical matrix GIJ , where the linearized
virtual strains ∆δE are given in (20)

S : ∆δEh =
nel∑
I=1

nel∑
J=1

δvT
I GIJ ∆vJ with GIJ = diag

[
ŜIJ , ŜIJ , ŜIJ

]
. (25)

The expression ŜIJ = Ŝm
IJ + Ŝs

IJ results from two parts which are specified below.



5.2 Shear stiffness part

According to Fig. 3, four collocation points M = A, B, C, D with given coordinates ξi

are defined.

Figure 3: Collocation points of the shear strain interpolation

At these points, the shear strains EM
13 , EM

23 of the Green–Lagrangean strain tensor are
evaluated. To avoid shear locking, the transverse shear strains E13 and E23 are given
using the interpolation functions introduced in [21][

2Eh
13

2Eh
23

]
=

[
(1 − ξ2)EB

13 + (1 + ξ2)ED
13

(1 − ξ1)EA
23 + (1 + ξ1)EC

23

]
. (26)

According to (26) the transverse shear strains are assumed to be constant in thickness
direction within the considered element. Numerical tests showed that this approximation
is sufficient for thin structures. The alternative with two planes and eight collocation
points within the element leads not to significant differences. Hence the variation of the
transverse shear strains can be expressed as

[
2δEh

13

2δEh
23

]
=

nel∑
I=1

Bs
I δvI (27)

with

Bs
I =

1
2

[
(1 − ξ2)(gBT

3 NB
I,1 + gBT

1 NB
I,3) + (1 + ξ2)(gDT

3 ND
I,1 + gDT

1 ND
I,3)

(1 − ξ1)(gAT

3 NA
I,2 + gAT

2 NA
I,3) + (1 + ξ1)(gCT

3 NC
I,2 + gCT

2 NC
I,3)

]
.

(28)

The shape function NM
I and the current base vectors gM

i are obtained by exploitation of
the corresponding equation at the collocation points M . The above defined quantity Ŝs

IJ

reads

Ŝs
IJ = 1

2 [(1 − ξ2)(NB
I,1 NB

J,3 + NB
I,3 NB

J,1) + (1 + ξ2)(ND
I,1 ND

J,3 + ND
I,3 ND

J,1)] S13

+1
2 [(1 − ξ1)(NA

I,2 NA
J,3 + NA

I,3 NA
J,2) + (1 + ξ1)(NC

I,2 NC
J,3 + NC

I,3 NC
J,2)] S23 .

(29)

5.3 Approximation of the thickness strains

For thin shell structures with bending dominated loading a locking effect due to artificial
thickness strains has been observed by Ramm et al. in [23] when using a direct inter-
polation of the director vector. To overcome this locking effect an ANS–interpolation of
the thickness strains E33 using bi–linear shape functions for four–node shell elements have
been proposed by Betsch, Stein in [2] and by Bischoff, Ramm in [4]. Here, we adapt this
procedure to the eight–node brick element. According to Fig. 4 four collocation points
L = A1, A2, A3, A4 are defined in the reference surface with ξ3 = 0.

Figure 4: Collocation points for the thickness strain interpolation



The approximation of E33 reads

Eh
33 =

4∑
L=1

1
4
(1 + ξ1

Lξ1)(1 + ξ2
Lξ2) EL

33 L = A1, A2, A3, A4 (30)

where EL
33 denotes the thickness strains at the above defined points L. Thus with (30)

it is assumed, that within the considered element E33 is constant in ξ3–direction. This
assumption holds for thin structures.

The variation of the thickness strains and the membrane strains are obtained from


δEh
11

δEh
22

δEh
33

2δEh
12


 =

nel∑
I=1

Bm
I δvI (31)

with

Bm
I =




gT
1 NI,1

gT
2 NI,2

4∑
L=1

1
4(1 + ξ1

Lξ1)(1 + ξ2
Lξ2) (gL

3 )T NL
I,3

gT
2 NI,1 + gT

1 NI,2


 . (32)

Furthermore, the above defined quantity Ŝm
IJ yields

Ŝm
IJ = S11 NI,1NI,1 + S22 NI,2NI,2

+ S33
4∑

L=1

1
4
(1 + ξ1

Lξ1)(1 + ξ2
Lξ2) NL

I,3 NL
J,3

+ S12 (NI,1NI,2 + NI,2NI,1) .

(33)

5.4 EAS - Interpolation

The membrane behaviour of the 3D–shell element can be essentially improved applying
the enhanced assumed strain method, [8]. Within a Lagrangean formulation we consider
a strain field as is given in (13). The enhanced part is expressed with respect to different
base vectors

Ẽ = Ẽij Gi ⊗ Gj =
detJ0

detJ
Ẽ0

ij Gi
0 ⊗ Gj

0 . (34)

The vectors Gi
0 and matrix J0 are evaluated at the element center. The matrix J contains

the base vectors Gi as follows
J = [G1, G2, G3] , (35)

whereas J0 is written in terms of the corresponding vectors Gi
0. The tensor components

Ẽ0
ij are arranged in a vector Ẽ0 according to (7). From (34) we obtain the matrix repre-

sentation
Ẽ =

detJ0

detJ
T0

E Ẽ0 , (36)

where the transformation matrix T0
E may be expressed with the coefficients t0ik = Gi ·Gk

0

similar to (9).

We assume interpolations, discontinuous over element boundaries, of the form

Ẽ0 = M(ξ1, ξ2, ξ3) αe . (37)



Here, αe is a vector of independent parameters and M the below given interpolation
matrix. With eq. (17) orthogonality of the independent stress field S̃ and the assumed
strain field Ẽ is assumed. The patch test requires the representation of a constant stress
state within an element. Thus, considering (36) and (37)∫

B0

detJ0

detJ
(S̃c)T (T0

E M αe) dV = 0 (38)

must hold, where S̃c denotes the vector of constant stresses. With dV = detJ dξ1 dξ2 dξ3

the interpolation matrix M must fulfill∫
B0

M(ξ1, ξ2, ξ3) dξ1 dξ2 dξ3 = 0 . (39)

Here, interpolations with 5, 8 and 11 parameters are chosen as follows

M5 =




ξ1 0 0 0 0
0 ξ2 0 0 0
0 0 ξ3 0 0
0 0 0 ξ1 ξ2

0 0 0 0 0
0 0 0 0 0




M8 =




ξ1 ξ1ξ2 0 0 0 0 0 0
0 0 ξ2 ξ1ξ2 0 0 0 0
0 0 0 0 ξ3 0 0 0
0 0 0 0 0 ξ1 ξ2 ξ1ξ2

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




M11 =




ξ1 ξ1ξ2 0 0 0 0 0 0 0 0 0
0 0 ξ2 ξ1ξ2 0 0 0 0 0 0 0
0 0 0 0 ξ3 ξ3ξ1 ξ3ξ2 ξ1ξ2ξ3 0 0 0
0 0 0 0 0 0 0 0 ξ1 ξ2 ξ1ξ2

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0




(40)

which fulfill the constraint (39). Introducing M̃ as

M̃ =
detJ0

detJ
T0

E M (41)

the following stiffness matrices associated with the element nodes I, J

KeIJ =
∫
Be

0

(BT
I CBJ + GIJ) dV

LeI =
∫
Be

0

M̃T C BI dV He =
∫
Be

0

M̃T C M̃ dV
(42)

and the following vectors are defined

f int
eI =

∫
Be

0

BT
I S dV f ext

eI =
∫
Be

0

NI ρ0 b̂ dV +
∫

∂Be
0

NI t̂ dA

he =
∫
Be

0

M̃TS dV .
(43)

Here, S denotes the vector of stresses evaluated from the material law. Hence, the dis-
cretized linearized weak form yields with (19) and (20) the following system of equations
on element level [

Ke LT
e

Le He

] [
∆ve

∆αe

]
=

[
f ext
e − f int

e

− he

]
(44)



Here, Ke, Le, f int
e and f ext

e contains the submatrices KeIJ , LeI , f int
eI and f ext

eI according to
the order of the nodes I and J . Furthermore ∆ve denotes the vector of the incremental
element displacements. Since the enhanced strains are interpolated discontinuously across
the element boundaries the parameters ∆αe can be eliminated by static condensation on
element level. This leads to the reduced problem KTe∆ve = Re with the element matrices

KTe = Ke − LT
e H−1

e Le Re = LT
e H−1

e he + f ext
e − f int

e . (45)

After assembly one obtains a pure displacement problem with the unknown nodal dis-
placements.

6 Integration through the layers

The evaluation of the stiffness matrix and residual load vector is performed using a nu-
merical Gauss integration. For the 8–node brick element with tri–linear shape functions
two integration points are sufficient for each direction. This yields an exact integration
of rectangular elements with a parallel epipetic geometry. Here, in total eight integration
points are used for each layer of the laminate. According to (22) the element geometry is
interpolated with tri–linear shape functions. After the first isoparametric map, see Fig.
5, we introduce a second isoparametric map for each layer.

Figure 5: First isoparametric map for the element geometry

The coordinates ξ = [ξ1, ξ2, ξ3]T are interpolated as follows

ξ =
nlay∑
i=1

N̄i ξi , with N̄i =
1
8
(1 + r1 r1

i )(1 + r2 r2
i )(1 + r3 r3

i ) (46)

where i represents the node number and ξi contains the coordinates of the considered
layer. The coordinates r = [r1, r2, r3]T , with −1 ≤ ri ≤ +1 are defined with a second
isoparametric space, see Fig. 6.

Figure 6: Second isoparametic map for the layer geometry

To evaluate the element matrices (42) and (43) we have to sum over all layers nlay and
over all integration points ngaus. As example, the integration of the element stiffness
matrix reads

Ke IJ =
nlay∑
L=1

ngaus∑
igaus=1

[
BT

I (ξL
gp) CL BJ(ξL

gp) + GIJ(ξL
gp)

]
detJ(ξL

gp) detJL(rL
gp)wL

gp . (47)

Here, J and JL denote the Jacobian matrix of the first and second map, respectively.
Furthermore, wgp are the weighting factors of the considered integration point.



7 Numerical examples

Subsequently we show the behaviour of the developed brick–type finite element within
linear and nonlinear applications. In the following different element types based on the
enhanced assumed strain method (EAS) and the assumed natural strain method (ANS)
are distinguished. The used abbreviations to denote the element types are given in Table 1.
As example, Q1A2E5 denotes a standard displacement element with additional assumed
shear strain interpolation and five enhanced strain parameters. The Q1E30–element is
formulated with respect to a global Cartesian basis system and possesses 30 enhanced
parameters for all strain components, see [16]. The first two examples show the element
behaviour with distorted meshes for plate and membrane problems. The last two examples
are concerned with thin layered shells. The discretization is performed with only one
element in thickness direction.

Q1 Displacement based element with tri–linear shape functions
A1 ANS with E33

A2 ANS with E13 and E23

A3 ANS with E13, E23 and E33

E5, E8, E11 EAS with 5,8 or 11 parameters according to (40)
E30 EAS with all strain components, global Cartesian basis system

Table 1: Specification of abbreviations to denote the element types

7.1 Clamped plate with single load

With the following linear example the behaviour of the described elements is tested for
a plate problem with distorted meshes. A clamped quadratic plate according to Fig. 7
is investigated. The length of the plate is L = 100 and the thickness is h = 1. The
isotropic material behaviour is described with Young’s modulus E = 104 and Poisson’s
ratio ν = 0.3. The plate is loaded at the center by a single load F = 16.367. An analytical
solution by Timoshenko and Woinowsky–Krieger [24] yields the center displacement as w
= 1. Considering symmetry one quarter of the plate is dicretized with four elements and
one element through the thickness. Here, we evaluate the center deflection with distorted
meshes according to Fig. 7. The results for the element types are depicted in Fig. 8

Figure 7: Clamped plate with single load

for different values of the distortion parameter s. The diagram shows that the Q1E30–
element yields good results for non–distorted meshes, whereas with increasing distortion
parameter the element locks. This phenomenon has been also observed by Andelfinger
[25] using plane stress shell elements. It shows, that the Q1E30–element can only be
used for plate problems with regular meshes. The Q1A2–element with assumed strain
interpolation for the transverse shear strains provides better results for distorted meshes.
However it suffers from another locking effect which follows form the three–dimensional
material law along with Poisson ’s ratio not equal zero. This effect has been discussed for
a shell formulation with an extensible director vector in [1]. In this example the elements
Q1A2E5 and Q1A2E11 are locking free. Here, the essential improvement results from the
enhanced thickness strains. For the present coarse mesh with four elements these results



are obviously the best which can be achieved within the considered class of elements (eight–
node brick elements or four–node shell elements with bilinear shape functions). The ANS
interpolation of the thickness strains does not improve the behaviour of the element for
this example.

Figure 8: Clamped plate with single load

7.2 Clamped beam subjected to couple forces

With this geometrical linear example the membrane behaviour of the different element
types is investigated. Fig. 9 shows a clamped beam subjected to couple forces with
F = 1000 at the free end. Two elements are used to discretize the cantilever. The
discretization is chosen in such a way that the elements are subjected to inplane–bending.
The material is isotropic with E = 1500 and ν = 0.

Figure 9: Clamped beam subjected to couple forces

Fig. 10 shows the normalized displacement v versus the distortion parameter s. As can
be seen the standard displacement element Q1 is obviously to stiff. Good results are
obtained with the elements Q1E5 and Q1E8. The interpolation functions of the Q1E8–
element contains a bilinear part ξ1ξ2 for the membrane strains E11, E22 and E12, see eq.
(40). This is the reason for the slightly better results of the Q1E8–element in comparison
with the element Q1E5 for highly distorted meshes. Here, the ANS modifications have no
influence on the calculated displacements.

Figure 10: Clamped beam subjected to couple forces

7.3 Clamped cylindrical shell segment

A clamped layered cylindrical shell segment subjected to a single load F = λF0 with
F0 = 200 at the free end is considered next, see Fig. 11. The length of the cylinder is
L = 304.8, the inner radius Ri = 100.1 and the thickness t = 3.0. A corresponding example
with isotropic material was investigated by Stander, Matzenmiller and Ramm [26]. Here,
we consider a composite material with 0◦/90◦/0◦ and 90◦/0◦/90◦ layer sequences, where
zero degree and 90 degrees refer to the axial and the circumferential direction of the
cylinder, respectively. The data for transversal isotropic material behaviour are given in
Fig. 11. Here, the ratios ν12, ν13, ν23 and the moduli G12, G13, G23 are equal ν and G,
respectively.



Figure 11: Clamped cylindrical shell segment

Considering symmetry conditions only half of the system is discretized. We use a finite
element mesh with 16 elements in axis direction, 16 elements in circumferential direction
and 1 element in thickness direction. The load deflection curves of the geometrical nonlin-
ear problem are shown in Fig. 12 for the two different laminates. As the diagram shows,
there is good agreement over the entire range of deformation between the results obtained
with a four–node shell element [27] and the new brick–type shell element Q1A3E5.

Figure 12: Load deflection curve of the cylindrical shell segment

In the following we discuss the influence of the ANS and EAS interpolations. Fig. 13
shows load deflection curves for the layer sequence 90◦/0◦/90◦ evaluated with different
element types. According to Fig. 12 the curve obtained with the Q1A3E5–element can
be seen as reference solution.

Figure 13: Load deflection curves for the layer sequence 90◦/0◦/90◦

The Q1A1E5–element without ANS–interpolation for the transverse shear strains is to stiff
even in the linear range. The Q1A3–element without enhanced strain formulation leads
to a correct deflection v within the linear theory. However, with increasing load a locking
effect can be observed when computing the nonlinear load deflection curve. A comparison
of the results obtained with the Q1A2E5–element and the Q1A3E5–element shows that
the ANS–interpolation for the thickness strains improves the behaviour of the element in
the range of finite deformations. Furthermore the example shows that the EAS–method
applied to the membrane strains and thickness strains is less important than the ANS–
interpolation for the shear strains and thickness strains. However this holds only for this
special structure.

Figure 14: Cylindrical shell segment with distorted mesh

Next we consider a distorted mesh according to Fig. 14. Here, we compare the Q1E30–
element with 30 enhanced assumed strain parameters for all strain components (Carte-
sian formulation, see Ref.[16]) with the Q1A3E5–element. The associated load–deflection
curves along with a reference solution evaluated with the Q1A3E5–element and a non–
distorted mesh are depicted in Fig. 15. As can be seen the Q1A3E5–element is fairly
insensitive with respect to mesh distortion whereas the Q1E30–element locks for distorted
meshes. Finally, the deformed cylinder with a deflection v=160 of the loading point is
shown in Fig. 16. It can be seen that finite deformations occur.



Figure 15: Load deflection curves for the 90◦/0◦/90◦–laminate

Figure 16: Deformed cylindrical shell segment at v=160, layer sequence 90◦/0◦/90◦

7.4 Buckling of a composite panel

Finally we investigate the buckling behaviour of a cylindrical carbon fiber reinforced com-
posite panel. Associated experiments with different thickness parameters for the skin have
been carried out within an ESA contract by the Institute of Structural Mechanics of the
”Deutsche Zentrum für Luft- und Raumfahrt” (DLR) in Braunschweig, FRG, see also
Ref. [28]. The panel consists of a cylinder segment with radius of the middle surface
R = 340 mm and six stiffeners, which are glued at the inner side of the skin, see Fig. 17.
The skin consists of 8 layers with a total thickness H = 1 mm.

Figure 17: Geometry and material data; rear view and top view of the panel

The cross–section of a stiffener is depicted in Fig. 18. The blade and the flange consist of
24 layers and 12 to 2 layers, respectively. The layup of the skin and stiffener is symmetric.
The complicated layup of the stiffener flange is simplified within the finite element model
according to Fig. 19. The layer sequence is given in Table 2, where zero degree refers to
the axial direction of the cylinder segment. The layer thickness is h = 0.125 mm.

Figure 18: Cross–section of a stiffener

Figure 19: Simplified finite element mesh of a stiffener

stiffener (blade) stiffener (flange) skin
layer sequence [(±45◦)3; 0◦6]sym [(±45◦)3] [90◦;±45◦; 0◦]sym

Table 2: Layup of the panel in FE–discretization

The finite element discretization with Q1A3E5–elements is depicted in Fig. 20. The skin
is discretized with one element through the thickness, 84 elements in length direction (80



elements for the inner range and 2 elements for the clamped range) and 66 elements in
circumferential direction. The discretization of a stiffener can be seen in Fig. 19.

The boundary conditions are taken from the experiments and set as follows. The panel is
clamped within a length of 90mm at both ends of the skin, where deflection in axis direc-
tion is possible. At the lower edge the panel is supported in axis direction. Furthermore,
the radial displacement at the straight edges is set to zero.

Figure 20: Load deflection curve of the panel

The panel is compressed at the top in axial direction where the axial displacement at
the upper edge remains constant. The results of the numerical investigation based on a
linear elastic model are depicted in Fig. 19. As can be seen, the load deflection behaviour
obtained with the finite element model is practically linear. The load is increased up to
a critical load F = 123.0 kN . The associated first and second eigenvectors are shown in
Fig. 21. The plots show global buckling modes of the skin. One should note, that the
eigenvalues lie very close together. Thus, a small variation of any geometrical parameter or
of the finite element model may change the shape of the eigenvectors. This holds especially
when imperfections are taken into account. The stability behaviour of the panel is fairly
sensitive with respect to geometrical imperfections of the skin. However due to missing
data, this is not considered within the present finite element discretization. The agreement
between the numerical results and the experimental results especially the buckling load is
good. The deviations in the upper range of the load deflection curve follow from inelastic
effects which are not contained in the present finite element model. Finally Fig. 22 shows
the panel in the experimental buckling state.

Figure 21: Radial component of the first and second eigenvector

Figure 22: Experimental buckling state of the carbon fiber reinforced panel

Acknowledgment: We thank Dr. R. Zimmermann of the DLR Braunschweig for the
experimental results of the panel and the photography in Fig. 22.

8 Conclusion

In this paper a continuum based shell element is presented. The eight nodes are located at
the surface of the element where each node possesses three displacement degrees of freedom.
This allows to account for special boundary conditions like surface loads. Furthermore the
displacement degrees of freedom are updated in a simple additive way within the Newton
iteration process. The stresses are evaluated using a three–dimensional material law.

The numerical tests showed that the ANS–interpolations for the transverse shear strains
and the thickness strains are essential for a locking–free element behaviour. Especially the
assumed transverse shear interpolation avoids effectively shear locking even with distorted
meshes. Here, it is essential that the element orientation is considered within the mesh
generation. Due to the elimination process of the enhanced parameters the computing



time increases with increasing number of internal parameters. Furthermore one can state
that many enhanced parameters lead to a loss of robustness within the nonlinear solution
processes especially for inelastic computations. The examples show that the versions
with 8 or 11 enhanced strain parameters compared with 5 parameters yield only minor
improvements of the element behaviour. Therefore the Q1A3E5–element is recommended
for the nonlinear analysis of the considered thin–walled shell structures. The presented
linear and nonlinear examples for layered composite shells show that the present brick–type
element yields the same accurate results as a comparable four–node shell element. Here
a discretization with only one element in thickness direction is used. However, applying a
sufficient fine discretization through the thickness a correct description of the interlaminar
shear and normal stresses is possible. This is e.g. necessary for a subsequent delamination
analysis. A standard shell element which is formulated with respect to a reference surface
does not offer this possibility.
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Figure 16: Deformed cylindrical shell segment at v=160, layer sequence 90◦/0◦/90◦
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Figure 17: Geometry and material data; rear view and top view of the panel



Figure 18: Cross–section of a stiffener
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Figure 22: Experimental buckling state of the carbon fiber reinforced panel
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