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ABSTRACT

A theory of space curved beams with arbitrary cross–sections and an associated finite
element formulation is presented. Within the present beam theory the reference point,
the centroid, the center of shear and the loading point are arbitrary points of the cross–
section. The beam strains are based on a kinematic assumption where torsion–warping
deformation is included. Each node of the derived finite element possesses seven de-
grees of freedom. The update of the rotational parameters at the finite element nodes is
achieved in an additive way. Applying the isoparametric concept the kinematic quantities
are approximated using Lagrangian interpolation functions. Since the reference curve lies
arbitrarily with respect to the centroid the developed element can be used to discretize
eccentric stiffener of shells. Due to the implemented constitutive equations for elastoplas-
tic material behaviour the element can be used to evaluate the load carrying capacity of
beam structures.

1 INTRODUCTION

Three–dimensional beam–like structures undergoing finite deformations occur in different
areas of engineering practice. Here motions of flexible beams like helicopter blades, rotor
blades, robot arms or beams in space–structure technology are mentioned. Furthermore,
the analysis of load carrying capacities requires the implementation of constitutive equa-
tions for inelastic material behaviour. Numerous papers have been published up to now
using different approaches. Some of them are discussed in the following.
Due to the non–commutativity of successive finite rotations about fixed axes, Argyris
et al.[1] introduced the so–called semi–tangential rotations to circumvent this difficulty.
Bathe and Bolourchi [2] developed an updated and a total Lagrangian formulation for
beams with large displacements. Thin structures undergoing finite deformations are
usually characterized by significant rigid body motions. This motivates the so–called
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co–rotational formulation where the rigid body motions are separated from the total de-
formation (e.g. see Belytschko and Hsieh [3], Crisfield [4] or Nour–Omid [5]). Applying
this procedure existing linear elements can be used for nonlinear computations.
Several authors developed finite element formulations for three–dimensional beams using
beam strains derived from the internal virtual work, see Reissner [6]. Here we mention
the papers of Simo and Vu–Quoc [7, 8] and Cardona and Géradin [9]. The authors in [7]
show that the linearization of the virtual work principle yields a non–symmetric geometric
tangent stiffness matrix when applying a multiplicative update of the rotation tensor. The
tangent matrix is only symmetric at a point of equilibrium assuming conservative loads.
Ibrahimbegović [10] derived symmetric tangent matrices when using an additive update
of the axial vector.
Most of the finite element formulations are concerned with beams where centroid and
center of shear coincide. The problem of coupled bending torsion deformation of beams
has been studied theoretically e.g. by Reissner [11, 12]. In Ref. [8] torsion–warping
deformation has been incorporated within the theory and the associated finite element
formulation.

In this paper we derive a three–dimensional finite beam–element with arbitrary space
curved reference axis. The novel aspects and essential features of the formulation are
summarized as follows:

(i) The introduced beam strains based on a kinematic assumption including torsion–
warping deformation are conform with the strains in Ref. [8]. Here, we additionally
derive the relation to the Green–Lagrangian strains and the associated variations.
In our formulation the matrix which relates the variation of the Green–Lagrangian
strains to the variational beam strains depends on the deformation. Thus the com-
plete nonlinearity within the underlying kinematic assumption is considered in the
present theory. Due to this fact the numerical results show a good agreement with
the results of higher valued models like shell discretizations for thin–walled struc-
tures.

(ii) The constitutive equations for elastoplastic material behaviour are implemented.
Within the present beam theory the normal stress and the shear stresses enter
into the von Mises yield condition and the associated flow rule. Thus interaction
between the different stress components is included. The nonlinear stress–strain
relations requires a numerical integration over the cross–sections. The developed
element can be used to analyze the carrying capacity of beam structures.

(iii) For linear elasticity and small strains the material matrix can be integrated ana-
lytically. For this purpose one has to apply the equations of Saint–Venant torsion
theory along with Green’s formula to integrate the so–called warping coordinates.
This yields a material matrix in terms of section quantities which describes the cou-
pling effects. In contrast to Ref. [8] the reference point is an arbitrary point of the
cross–section.

(iv) The finite element formulation is presented using Lagrangian interpolation functions.
Each node possesses seven degrees of freedom at the nodes. The update of the
nodal rotation quantities is performed in an additive way. Within this procedure
additional storage of the rotation matrix with nine parameters can be avoided. The



linearization yields a symmetric tangent matrix. However, due to the chosen finite
element approximation the expressions are essentially simpler compared with Ref.
[10]. The external loading can be applied at an arbitrary point of the cross–section.
The contribution of the loads to the stiffness matrix is derived. Loading with stress
couple resultants leads to a symmetric load stiffness matrix. This is in contrast to
the multiplicative procedure, see Ref. [7].

The contents of the paper is outlined as follows:
In the next section we present the kinematics of a space curved beam. The beam strains
are defined and the relation to the Green–Lagrangian strains is shown. In section 3 the
underlying variational formulation of the boundary value problem is given using a La-
grangian representation. The associated Euler–Lagrange equations are derived. Further-
more the linearized variational formulation is described. In section 4 the basic equations
for elastoplastic material behaviour are given. For linear elasticity and small strains the
material matrix which describes the torsion bending coupling is derived in terms of section
quantities. The associated finite element formulation is given in section 5. The applica-
bility of the developed formulation is demonstrated in section 6 with several examples.
Comparisons with results obtained with shell discretizations are given.

2 KINEMATIC DESCRIPTION OF THE BEAM

A beam with reference configuration denoted by B0 according to Fig. 1 is considered.
Assuming arbitrary cross–sections the centroid S and the center of shear M are inde-
pendent of the reference point O. An orthogonal basis system Ai with local coordinates
{ξ1, ξ2, ξ3} is introduced. The axis of the beam is initially along A1 with the arc–length
parameter S = ξ1 ∈ [0, L] of the spatial curve. The cross–sections of the beam therefore
lie in planes described by the basis vectors {A2,A3}. Accordingly the frame ai is defined
in the current configuration which is characterized by the time parameter t. Note, that
within the underlying beam kinematic the vector a1 is not tangent vector of the deformed
reference curve.
The basis vectors Ai and ai follow from the orthogonal transformations

Ai(S) = R0(S) ei , ai(S, t) = R(S, t) ei with R0,R ∈ SO(3) . (1)

Several parametrizations of orthogonal tensor using Eulerian angles, Cardan angles, quater-
nions etc. have been discussed in the literature, see e.g. Géradin and Rixen [13], Betsch
et al. [14].
The position vectors of the undeformed and deformed cross–sections are given with the
following kinematic assumption

X(ξ2, ξ3, S) = X0(S) + ξ2A2(S) + ξ3A3(S)

x(ξ2, ξ3, S, t) = x0(S, t) + ξ2a2(S, t) + ξ3a3(S, t) + α(S, t) w̄(ξ2, ξ3) a1(t)
(2)

where a1 is assumed to be piecewise constant. The given warping function w̄(ξ2, ξ3) is
defined within the Saint–Venant torsion theory for bars. This is a basic assumption which
restricts the present formulation to a certain class of problems. Our numerical investi-
gations however showed good agreement of the results for thin–walled beam structures
obtained with the present beam model compared with a higher valued shell model.
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Figure 1: Initial and current configuration of the beam

For linear elasticity and pure torsion the boundary value problem is given with the fol-
lowing Neumann problem, see e.g. Timoshenko and Goodier [15]

w̄,22 +w̄,33 = 0 in A

w̄,2 n2 + w̄,3 n3 = ξ3 n2 − ξ2n3 on C ,
(3)

where the outward normal vector n = [n2, n3]
T is defined on the boundary C. Here, the

notation (·),β is used to denote partial derivatives with respect to the coordinates ξβ. The
solution of (3) along with the normality conditions∫

A

w̃ dA = 0 ,
∫
A

w̃ ξ2 dA = 0 ,
∫
A

w̃ ξ3 dA = 0 (4)

define the center of shear M with coordinates {m2, m3}. The warping function w̃ refers
to M and reads

w̃ = w̄ + m2ξ̄3 − m3ξ̄2 (5)

where the coordinates ξ̄2 = ξ2 − s2 and ξ̄3 = ξ3 − s3 intersect at the centroid S.
Based on the kinematic assumption (2) the tangent vectors Gi = X,i and gi = x,i are
derived

G1 = X′
0 + ξ2A

′
2 + ξ3A

′
3

G2 = A2

G3 = A3

g1 = x′
0 + ξ2a

′
2 + ξ3a

′
3 + α′ w̄a1

g2 = a2 + α w̄,2 a1

g3 = a3 + α w̄,3 a1

(6)

where (·)′ denotes the customary symbol for differentiation with respect to the arc–length.
The derivative of the orthogonal basis systems can be expressed using the vector products
A′

i = θ0 × Ai and a′
i = θ × ai, where θ0 and θ denote the so–called axial vectors. Pull–

back of the covariant basis vectors with the rotation tensors R0 = Ai⊗ei and R = ai⊗ei

yields

F1 := RT
0 G1 = ε0 + κ0 × d

F2 := RT
0 G2 = e2

F3 := RT
0 G3 = e3

f1 := RTg1 = ε + κ × d + α′w̄e1

f2 := RTg2 = e2 + αw̄,2 e1

f3 := RTg3 = e3 + αw̄,3 e1

(7)



with d = ξ2e2 + ξ3e3. The strain vectors of the current configuration are defined with

ε := RTx′
0 =




x′
0 · a1

x′
0 · a2

x′
0 · a3


 κ := RT θ =




a′
2 · a3

a′
3 · a1

a′
1 · a2


 . (8)

The corresponding quantities of the reference configuration read ε0 = RT
0 X′

0 and κ0 =
RT

0 θ0.
Eqs. (6) are inserted into the Green–Lagrangian strain tensor E = EijG

i ⊗ Gj, where
the dual basis vectors Gi are defined in a standard way Gi · Gj = δj

i . The components
which contribute to the virtual work read

E =




E11

2E12

2E13


 =




1
2
(g11 − G11)
g12 − G12

g13 − G13


 (9)

with the metric coefficients

Gij = Gi · Gj = Gi · R0R
T
0 Gj = Fi · Fj

gij = gi · gj = gi · RRTgj = fi · fj
(10)

of the reference configuration and current configuration, respectively.

3 VARIATIONAL FORMULATION OF THE BOUNDARY VALUE
PROBLEM

In this section the virtual work of the stresses and the external forces are derived consid-
ering the beam kinematic. For this purpose stress resultants are defined. The associated
Euler–Lagrange equations and the linearization of the virtual work expressions are given.

3.1 Internal Virtual Work and Definition of Stress Resultants

Volume forces ρ0b̄ and applied surface loads t̄ are acting on the considered body. Hence
the equilibrium is given here in weak form

g(v, δv) =
∫
B0

S · δE dV −
∫
B0

ρ0b̄ · δu dV −
∫

∂B0

t̄ · δu dΩ = 0 . (11)

The independent kinematic quantities of the beam are v = [u,R, α]T , where u = x0 −X0

and R = ai ⊗ ei denote the displacement vector and the rotation tensor of the reference
curve according to (2), respectively. The space of kinematically admissible variations is
introduced by

V := {δv = [δu, δw, δα]T : [0, L] −→ R3| δv = 0 on Su} (12)

where Su describes the boundaries with prescribed displacements and rotations. Here,
the axial vector δw is defined by δai = δRRT ai = δw × ai.
The Green–Lagrangian strain tensor is work conjugate to the Second Piola–Kirchhoff
stress tensor S = Sij Gi⊗Gj. Within the present beam theory the components S22, S33, S23



are neglected. Using matrix notation the vector of non–vanishing stress components is
defined

S =
[
S11, S12, S13

]T
. (13)

The variation of the work conjugate Green–Lagrangian strains (9) yields with (7) – (10)

δE =




δE11

2δE12

2δE13


 =




f1 · δf1
f2 · δf1 + f1 · δf2
f3 · δf1 + f1 · δf3


 (14)

where
δf1 = δε + δκ × d + δα′ w̄e1

δf2 = δα w̄,2 e1

δf3 = δα w̄,3 e1 .

(15)

Introducing
F̂ = [f1, f2, f3]

Wd = skewd =




0 −ξ3 ξ2

ξ3 0 0

−ξ2 0 0




a = (f1 · e1) (w̄,2 e2 + w̄,3 e3)

(16)

one obtains

δE = A δÊ

A = [F̂T , F̂TWT
d , a, w̄ F̂Te1] δÊ =




δε

δκ

δα

δα′


 .

(17)

The variation of the beam strains (8) yields

δε = RT δx′
0 + δRTx′

0 = RT (δx′
0 − δw × x′

0)

δκ = RT δθ + δRT θ = RT δw′ .
(18)

Eq. (18)1 is evident, whereas a proof of (18)2 is given e.g. in [17]. Furthermore a
representation of the components yields

δε =




a1 · δu′ + x′
0 · δa1

a2 · δu′ + x′
0 · δa2

a3 · δu′ + x′
0 · δa3


 δκ =




a3 · δa′
2 + a′

2 · δa3

a1 · δa′
3 + a′

3 · δa1

a2 · δa′
1 + a′

1 · δa2


 . (19)

Using (17) the internal virtual work in (11) can be rewritten with dV = dA dS as

gint(v, δv) =
∫
B0

δET S dV =
∫
S

δÊT Ŝ dS

=
∫
S

(F · δε + M · δκ + Fwδα + Mwδα′) dS
(20)



with the vector of stress resultants

Ŝ =
∫
A

AT S dA =




F
M
Fw

Mw


 =

∫
A




T
L
Tw

Lw


 dA (21)

where T = [T 11, T 12, T 13]T = F̂S and L = Wd T. Finally a component representation of
the vector of stress resultants yields

Ŝ =




F 1

F 2

F 3

M1

M2

M3

Fw

Mw




=
∫
A




T 11

T 12

T 13

T 13ξ2 − T 12ξ3

T 11ξ3

−T 11ξ2

T̃ 12w̄,2 +T̃ 13w̄,3

T 11w̄




dA (22)

with T̃ 1α = (f1 · e1)S
1α and α = 2, 3. Herein, F 1 is the normal force, F 2 and F 3 the shear

forces, M1 the torsion moment, M2 and M3 the bending moments, Fw the bi–shear and
Mw the bi–moment, respectively.

3.2 External Virtual Work and Euler–Lagrange Equations

In this paper the volume forces ρ0b̄ and the surface loads t̄ according to (11) are considered
with the load p̄ = p̄(S) acting at the coordinates {p2, p3}, see Fig.1. The vector of the
loading point in the current configuration reads xp = x0+rp with rp = p2a2+p3a3+α w̄p a1

and w̄p = w̄(p2, p3).
Hence the external virtual work reads

gext(v, δv) = −
∫
S

p̄ · δxp dS

= −
∫
S

p̄ · (δx0 + p2δa2 + p3δa3 + αw̄pδa1 + δαw̄pa1) dS

= −
∫
S

(p̄ · δx0 + m̄ · δw + p̄1δα) dS

(23)

with m̄ = rp × p̄ and p̄1 = w̄p (p̄ · a1) .

The weak form of equilibrium (11) is now reformulated using the expressions (20), (18)
and (23). This yields

g(v, δv) =∫
S

[f · (δx′
0 − δw × x′

0) + m · δw′ + Fwδα + Mwδα′ − (p̄ · δx0 + m̄ · δw + p̄1δα)] dS = 0

(24)



with f := RF and m := RM. Next, integration by parts yields with homogeneous stress
boundary conditions

g(v, δv) = −
∫
S

[(f ′ + p̄) · δx0 + (m′ + x′
0 × f + m̄) · δw + (Mw ′ − Fw + p̄1) δα] dS = 0 .

(25)
Applying standard arguments from variational calculus we obtain

f ′ + p̄ = 0

m′ + x′
0 × f + m̄ = 0

Mw ′ − Fw + p̄1 = 0 .

(26)

These are the Euler–Lagrange equations of the variational formulation. The first two
equations in (26) are well–known equilibrium equations of a three–dimensional beam using
a vector notation. The third equation is identical to that of the linear theory. Reissner
[12] derived (26)3 in the context of a second–order geometrical nonlinear theory.

3.3 Linearization of the Virtual Work Expressions

For the subsequent finite element formulation we need to derive the linearization of the
weak form of equilibrium (11). This is formally achieved using the directional derivative

L [g(v, δv)] = g + Dg · ∆v , Dg · ∆v =
d

dε
[G(v + ε∆v)]ε=0 (27)

where ∆v = [∆u, ∆w, ∆α]T . The linearization of the internal virtual work yields a
material part and a geometrical part

Dgint(v, δv) · ∆v =
∫
S

(δÊT D̂∆Ê + ∆δÊT Ŝ) dS . (28)

Here the linearized beam strains ∆Ê = [∆ε, ∆κ, ∆α, ∆α′]T are obtained from (19) re-
placing the operator δ by ∆. Furthermore the linearized virtual strains are expressed by
∆δÊ = [∆δε, ∆δκ, 0, 0]T with

∆δε =




δu′ · ∆a1 + δa1 · ∆u′ + x′
0 · ∆δa1

δu′ · ∆a2 + δa2 · ∆u′ + x′
0 · ∆δa2

δu′ · ∆a3 + δa1 · ∆u′ + x′
0 · ∆δa3




∆δκ =




δa′
2 · ∆a3 + δa3 · ∆a′

2 + a3 · ∆δa′
2 + a′

2 · ∆δa3

δa′
3 · ∆a1 + δa1 · ∆a′

3 + a1 · ∆δa′
3 + a′

3 · ∆δa1

δa′
1 · ∆a2 + δa2 · ∆a′

1 + a2 · ∆δa′
1 + a′

1 · ∆δa2




.

(29)

Next the linearization of the stress resultants (21) applying the product rule leads to

D̂ =
d Ŝ

d Ê
=

d

d Ê
[
∫
A

AT S dA] =
∫
A

(ATCTA + Ĝ) dA . (30)

The first part follows from differentiation of the stress vector S and the incremental
Green–Lagrangian strains dE = A dÊ. The tangential matrix CT := dS/dE is specified



for elastic–plastic material behaviour in the next section. The second part follows from
differentiation of the matrix product ATS where the stress vector S is held fixed. With




T

L

Tw

Lw


 =




S11f1 + S12f2 + S13f3

Wd(S
11f1 + S12f2 + S13f3)

S̃(f1 · e1)

S11w̄(f1 · e1) + S̃αw̄


 (31)

where S̃ = S12w̄,2 +S13w̄,3 and fi according to (7) one obtains

Ĝ =




∂T
∂ε

∂T
∂κ

∂T
∂α

∂T
∂α′

∂L
∂ε

∂L
∂κ

∂L
∂α

∂L
∂α′

(∂T w

∂ε )T (∂T w

∂κ )T ∂T w

∂α
∂T w

∂α′

(∂Lw

∂ε )T (∂Lw

∂κ )T ∂Lw

∂α
∂Lw

∂α′


 =




S111 S11WT
d S̃e1 S11w̄e1

S11Wd −S11W2
d S̃d̃ S11w̄d̃

S̃eT
1 S̃d̃T 0 S̃w̄

S11w̄eT
1 S11w̄d̃T S̃w̄ S11w̄2


 (32)

where d̃ = Wde1 = ξ3e2 − ξ2e3. The integration over the cross–section in (21) and (30) is
performed numerically. The warping function w̄ is determined for arbitrary cross–sections
in a separate computing process using the finite element method as is discussed in [16].
The finite element mesh for the computation of w̄ is used here to perform the numerical
Gauss integration. In case of small strains F̂ ≈ 1 holds, A becomes independent of the
displacement field and Ĝ vanishes.
Finally we derive the linearization of the external virtual work as

Dgext(v, δv) · ∆v = −
∫
S

p̄ · ∆δxp dS (33)

with ∆δxp = p2∆δa2 + p3∆δa3 + αw̄p∆δa1 + δαw̄p∆a1 + ∆αw̄pδa1.

4 MATERIAL LAW AND STRESS RESULTANTS

In this section we present the constitutive equations for elastoplastic material behaviour.
We consider metallic materials which can be described by the von Mises yield criterion
with isotropic hardening and associated flow rule. For elasticity the section integrals are
reformulated using the equations of Saint–Venant’s torsion theory and Green’s theorem.
This yields an elasticity matrix where for the general case torsion bending coupling occurs.

4.1 Elastic–Plastic Stress Analysis

The Green–Lagrangian strains (9) are decomposed in an elastic and plastic part

E = Eel + Epl (34)

which holds for small elastic and plastic strains. The elastic part is described by the
so–called St.Venant–Kirchhoff material law. Thus, a quadratic strain energy function is
postulated where the stresses are obtained by partial derivatives

Ws(E
el) =

1

2
EelTCEel , S =

∂Ws

∂Eel
= CEel. (35)



Since the stresses S22, S33 and S23 are neglected the constitutive matrix reads

C =


 E 0 0

0 G 0
0 0 G




.

(36)

Here, E and G denote Young’s modulus and shear modulus, respectively.
The plastic flow of metals can be described using the von Mises yield condition with
isotropic hardening

F (S, epl) = h(S) − y0 + r(epl) (37)

where

h(S) =
√

STPS , P =




1 0 0
0 3 0
0 0 3




.

(38)

Assuming strain hardening the yield stress y is given here with the equivalent plastic
strain epl using a linear hardening function r(epl) = −K epl, thus

y = y0 + K epl . (39)

The initial yield stress y0 and the hardening parameter K are material constants.
The rates of the plastic strains and of the equivalent plastic strain are described using an
associated flow rule

Ėpl = λ̇
∂F

∂S
ėpl = λ̇

∂F

∂r
, (40)

where the gradient of the yield condition can be expressed as

∂F

∂S
=

1

h
PS := N

∂F

∂r
= 1 . (41)

In (40) the loading–unloading conditions

λ̇ ≥ 0 , F ≤ 0 , λ̇ F = 0 (42)

must hold.
Hence, a backward Euler integration algorithm within a time step tn+1 = tn +∆t leads to

Epl
n+1 = Epl

n + γNn+1

epl
n+1 = epl

n + γ
(43)

where γ =
∫ tn+1
tn λ̇ dt. Inserting (35)2 and (43)1 into (34) at time tn+1 yields

Sn+1(γ) = C̄(γ)Etr Etr := En+1 − Epl
n (44)

with

C̄(γ) = (C−1 +
γ

y
P)−1 =




E
1+Eγ/y

0 0

0 G
1+3Gγ/y

0

0 0 G
1+3Gγ/y




.

(45)

To express Sn+1 as an explicit function of γ we replaced h(S) by y(γ) in (45) using
F (S, epl) = 0. The consistency parameter γ is obtained with the solution of the yield



condition F (Sn+1, e
pl
n+1) = 0. This is achieved iteratively within a Newton iteration pro-

cedure

γ(l+1) = γ(l) − F (l)

dF (l)

dγ

F (l) = h
[
Sn+1(γ

(l))
]
− y

[
epl

n+1(γ
(l))

]
dF (l)

dγ
= −

[
h

y
(1 − γ

y

dy

depl
)NT C̄N +

dy

depl

] (46)

where l denotes the iteration number and dy/depl = K. As starting value we take
γ(0) = 0. The equivalent plastic strain follows from (43)2. Note, that during the iteration
y 	= h holds. The elastoplastic stresses at each integration point are evaluated using a
well–known operator split method. The predictor step yields the so–called trial stresses
Str = CEtr. If above yield condition is not fulfilled the stresses are given with the
corrector step according to (44), thus

Sn+1 =




CEtr if F (Str, epl
n ) ≤ 0

C̄Etr if F (Str, epl
n ) > 0 .

(47)

The consistency parameter γ depends on the strains E via eq. (46)2. This has to be
considered when linearizing the stress vector (47). One obtains

dS

dE

∣∣∣∣∣
n+1

=




C if F (Str, epl
n ) ≤ 0

C̄ − C̄NNT C̄

NT C̄N + β
if F (Str, epl

n ) > 0
(48)

with β = K/(1 − γK/y).

4.2 Elastic Stress Analysis

In case of small strains the transformation matrix F̂ according to (16) is approximately
the identity matrix, thus F̂ ≈ 1. In this case A is given with (17)

A =




1 0 0 0 ξ3 −ξ2 0 w̄

0 1 0 −ξ3 0 0 w̄,2 0

0 0 1 ξ2 0 0 w̄,3 0




.

(49)

One can see that A does not depend on the deformation and E = AÊ holds. For
elasticity the stress vector is obtained from S = CAÊ. Now the matrix of the linearized
stress resultants (30) can be reformulated using (48), (36), (49) and Ĝ = 0

D̂ =
∫
A




E 0 0 0 Eξ3 −Eξ2 0 Ew̄
G 0 −Gξ3 0 0 Gw̄,2 0

G Gξ2 0 0 Gw̄,3 0
G(ξ2

2 + ξ2
3) 0 0 G(ξ2w̄,3 −ξ3w̄,2 ) 0

Eξ2
3 −Eξ2ξ3 0 Ew̄ξ3

Eξ2
2 0 −Ew̄ξ2

sym G(w̄,22 +w̄,23 ) 0
Ew̄2




dA . (50)



The centroid of the cross–section with coordinates {s2, s3} is denoted by S, see Fig. 1.
Furthermore we denote the area of the cross–section by A, the moments of inertia relative
to the centroid by Ī22, Ī33, Ī23, the Saint–Venant torsion modulus by IT and the warping
constant by Iw̃. The following definitions are given with α, β = 2, 3

Sα :=
∫
A

ξαdA = Asα

Īαβ :=
∫
A

ξ̄αξ̄β dA Iαβ :=
∫
A

ξαξβ dA = Īαβ + Asαsβ

I0 := I22 + I33

IT :=
∫
A

[ξ2(w̄,3 +ξ2) − ξ3(w̄,2 −ξ3)] dA = I0 +
∫
A

(ξ2w̄,3 −ξ3w̄,2 ) dA

Iw̃ :=
∫
A

w̃2 dA .

(51)

Using the equations of Saint–Venants torsion theory (3) and application of Green’s theo-
rem yields after some algebra the missing quantities, see appendix A.1∫

A

w̄,2 dA = As3

∫
A

w̄,3 dA = −As2∫
A

(w̄,22 +w̄,23 ) dA = I0 − IT∫
A

w̄ξ2 dA = Ī22m3 − Ī23m2 := Iw̄2

∫
A

w̄ξ3 dA = −Ī33m2 + Ī23m3 := Iw̄3∫
A

w̄2 dA = Iw̃ + Ī33m
2
2 + Ī22m

2
3 − 2Ī23m2m3 := Iw̄ .

(52)
A numerical computation of w̄(ξ2, ξ3) which fulfills

∫
A w̄ dA = 0 and above section quan-

tities for arbitrary cross–sections using the finite element method is discussed in e.g. [16].
In fact (52)4 and (52)5 are two equations which can be solved for the coordinates m2 and
m3 if Iw̄2 and Iw̄3 are known, see Ref. [16].
Now, (50) can be expressed inserting the section quantities (51) and (52) as follows

D̂ =




EA 0 0 0 EAs3 −EAs2 0 0
GA 0 −GAs3 0 0 GAs3 0

GA GAs2 0 0 −GAs2 0
GI0 0 0 −G(I0 − IT ) 0

EI33 −EI23 0 EIw̄3

EI22 0 −EIw̄2

sym G(I0 − IT ) 0
EIw̄




.

(53)

The elasticity matrix (53) is constant and symmetric. Hence, considering (30) the vector
of stress resultants follows from

Ŝ = D̂ Ê Ê =




ε − ε0

κ − κ0

α
α′




.

(54)



As can be seen torsion–bending coupling occurs if the reference point O and the shear
center M with coordinates {m2, m3} do not coincide. If the coordinates {ξ2, ξ3} define
principal axes of the cross–section and if S = M = O all off–diagonal terms except
−G(I0 − IT ) are zero. Furthermore, if the contribution of the bi–moment and of the
bi–shear to the strain energy is neglectable a formulation with six stress resultants can
be derived, see [17]. In this case one obtains the well–known elasticity matrix D̂ =
diag [EA, GA, GA, GIT , EI33, EI22] .

5 FINITE ELEMENT FORMULATION

According to the isoparametric concept, the following kinematic variables are interpo-
lated using standard Lagrangian shape functions NI(ξ) where ξ ∈ [−1, +1]. Within a
typical element the position vector of the reference curve Sh

0 , the curve Sh of the current
configuration and the parameter α are interpolated by

Xh
0 =

nel∑
I=1

NI(ξ)XI , xh
0 =

nel∑
I=1

NI(ξ)(XI + uI) , αh =
nel∑
I=1

NI(ξ)αI . (55)

Here nel denotes the number of nodes at the element. For nel ≥ 3 the reference curve of
a space–curved beam is approximated by polynomial functions.
Furthermore the basis systems of the reference configuration and the current configuration
are approximated using the same interpolation functions

Ah
m =

nel∑
I=1

NI(ξ)AmI , ah
m =

nel∑
I=1

NI(ξ) amI . (56)

Thus the orthogonality condition of the basis systems Ah
m and ah

m is only fulfilled at the
nodes. Numerical investigations however show that no significant loss of accuracy follows
from this approximation. The initial basis system AmI is generated within the input of
the finite element mesh whereas the current basis system at the finite element nodes is
computed using the so–called Rodrigues formula

RI = amI ⊗ em = 1 +
sin ωI

ωI

ΩI +
1 − cos ωI

ω2
I

Ω2
I (57)

with ωI = |ωI |. Note, that formula (57) is singularity free for 0 ≤ ωI < 2π. The
singularity at n2π (n = 1, 2, 3, ...) can be overcome by a multiplicative update of the
rotation tensor after a certain number of load steps. The skew–symmetric tensor ΩI

follows from the independent rotational parameters by ΩI = skew ωI . The basic equation
reads ΩI h = ωI × h for all h ∈ R3, thus the components are given by

ωI =




ω1I

ω2I

ω3I




,

ΩI =




0 −ω3I ω2I

ω3I 0 −ω1I

−ω2I ω1I 0




.

(58)

The finite element approximations of the virtual displacements, basis vectors and the
associated linearization are expressed as follows

δuh =
nel∑
I=1

NI(ξ)δuI , δαh =
nel∑
I=1

NI(ξ)δαI ,

δah
m =

nel∑
I=1

NI(ξ)δamI , ∆δah
m =

nel∑
I=1

NI(ξ)∆δamI .
(59)



The derivative of the shape function NI(ξ) with respect to the arc–length S is obtained
using the chain rule N ′

I(ξ) = NI(ξ),ξ /|Xh
0 ,ξ |. Hence, the tangential vectors X′

0 and x′
0,

the derivatives of the basis vectors A′
m and a′

m and associated variations and linearizations
are given replacing NI by N ′

I in (55), (56) and (59).
The variation of the orthogonal basis system amI yields for all h ∈ R3

δamI = δwI × amI = WT
mIδwI ,

h · δamI = bmI(h) · δwI , bmI(h) = amI × h
(60)

and

h · δam =
nel∑
I=1

NI bmI(h) · δwI h · δa′
m =

nel∑
I=1

N ′
I bmI(h) · δwI . (61)

Thus, the virtual beam strains δÊ considering (19) can be expressed as follows

δÊh =
nel∑
I=1

BI δvI , BI =




N ′
I RT NI BT

εI 0

0 N ′
I BT

κI + NI B′T
κI 0

0 0 NI

0 0 N ′
I


 (62)

with the virtual nodal displacement vector δvI = [δuI , δwI , δαI ]
T and

R := [a1, a2, a3] BεI := [b1I(x
′
0), b2I(x

′
0), b3I(x

′
0)]

BκI := [b2I(a3), b3I(a1), b1I(a2)] B′
κI := [b3I(a

′
2), b1I(a

′
3), b2I(a

′
1)] .

(63)

Next the finite element interpolation (55) – (63) is inserted into the linearized boundary
value problem (27)

L[g(vh, δvh)] = A
e=1

numel nel∑
I=1

nel∑
K=1

δvT
I (f e

I + Ke
IK∆vK) . (64)

Here, A denotes the standard assembly operator, numel the total number of elements
to discretize the problem and ∆vK = [∆uK , ∆wK , ∆αK ]T the incremental displacement
vector. Furthermore f e

I and Ke
IK denote the sum of the internal and external nodal forces

of node I and the tangential stiffness matrix of element e related to nodes I and K,
respectively. Considering (62) one obtains

f e
I =

∫
S

(BT
I Ŝ − NI q̄) dS , Ke

IK =
∫
S

(BT
I D̂BK + GIK + PIK) dS (65)

with
q̄ = [p̄, m̄I , p̄1I ]

T

m̄I = rI × p̄ rI = p2 a2I + p3 a3I + α w̄p a1I

p̄1I = w̄p p̄ · a1I .
(66)

For linear elasticity the vector of stress resultants follows from the constitutive equation
(54). For elastoplastic material behaviour Ŝ and D̂ are obtained by numerical integration
according to (22) and (30), respectively.



Next the geometric matrix GIK is derived with the linearized virtual strains (29). For
this purpose the second variation of the current basis system is derived as

h · ∆δamI = δwI · M(amI ,h)∆wI

M(amI ,h) =
1

2
(amI ⊗ h + h ⊗ amI) +

1

2
(tmI ⊗ ωI + ωI ⊗ tmI) + c10 1

(67)

where tmI and c10 are specified in appendix A.3. This yields

h · ∆δam =
nel∑
I=1

NI δwI · M(amI ,h) ∆wI

h · ∆δa′
m =

nel∑
I=1

N ′
I δwI · M(amI ,h) ∆wI

(68)

for all h ∈ R3. As can be seen, the linearization of the basis system leads to a symmetric
bi–linear form. One obtains

GIK =




0 N ′
INK WT

fK 0

NIN
′
K WfI Gww

IK 0

0 0 0




,

(69)

where

Gww
IK = N ′

INKŴ1
IK + NIN

′
KŴ2

IK + δIK [M(a1I ,h1I) + M(a2I ,h2I) + M(a3I ,h3I)]

h1I = NI F 1x′
0 + NI M2a′

3 + N ′
I M3a2

h2I = NI F 2x′
0 + NI M3a′

1 + N ′
I M1a3

h3I = NI F 3x′
0 + NI M1a′

2 + N ′
I M2a1

Ŵ1
IK = M1W2IW

T
3K + M2W3IW

T
1K + M3W1IW

T
2K

Ŵ2
IK = M1W3IW

T
2K + M2W1IW

T
2K + M3W2IW

T
3K

WfI = skew (F 1a1I + F 2a2I + F 3a3I) .
(70)

The external loading yields a contribution to the stiffness matrix if rI 	= 0. Considering
(33) one obtains

PIK = −




0 0 0

0 NI δIK M(rI , p̄) NINK m̄1I

0 NINK m̄T
1K 0


 (71)

where m̄1I = w̄p a1I × p̄.
Application of the chain rule yields the differential arc–length dS = |Xh

0 ,ξ | dξ. The inte-
gration of the element residual and element stiffness matrix with respect to the coordinate
S is performed numerically. To avoid shear locking uniform reduced integration is applied
to all quantities. Finally the transformations of the axial vectors are introduced as follows

δwI = HI δωI ∆wK = HK ∆ωK (72)

where the tensor H is specified in appendix A.2. This leads to

L[g(vh, δvh)] = A
e=1

numel nel∑
I=1

nel∑
K=1

δṽT
I (f̃ e

I + K̃e
IK∆ṽK)

δṽI = [δuI , δωI , δαI ]
T ∆ṽK = [∆uK , ∆ωK , ∆αK ]T

f̃ e
I = TT

I f e
I K̃e

IK = TT
I Ke

IKTK TI = diag[1, HI , 1] .

(73)



From eq. (73) one obtains a linear system of equations for the incremental nodal degrees
of freedom. It is emphasized, that the update of the nodal displacements as well as of the
rotational parameters is performed in an additive way. Thus, the equilibrium configuration
is computed iteratively within the Newton iteration procedure.

Remark:
Within an alternative procedure one keeps ∆wI as unknown incremental rotational pa-
rameters. Thus the transformation (73) is not necessary anymore. However ωI must be
known for the finite element interpolation (57) – (71). It can be obtained within the
following simple update procedure

ω
(n+1)
K = ω

(n)
K + ∆ωK ∆ωK = H−1

K ∆wK

H−1
K = 1 − 1

2
Ω

(n)
K + 1

2
c3 Ω

2(n)
K

(74)

where n denotes the index of the Newton iteration procedure. One can easily show that
above expression fulfills H−1

K HK = 1. Again, the advantage of (74) compared with (73) is,
that the transformation δwI = HI δωI drops out. However, the algorithm (74) requires

additional storage of the parameters ω
(n)
K .

6 NUMERICAL EXAMPLES

The element scheme has been implemented in an enhanced version of the program FEAP
documented in Ref. [18]. In this section three examples with finite deformations and
elastic–plastic material behaviour are presented. With the first example we investigate
the stability behaviour of a beam assuming linear elastic material behaviour. The last
two examples are concerned with the load carrying capacity of beam structures. The
second example is a channel–section beam, where centroid, center of shear and loading
point are not identical. With the last example we solve a coupled beam–shell problem.
For comparison the investigated thin–walled beam structures are discretized using four–
noded shell elements. These elements possess six nodal degrees of freedom which are
identical to the first six degrees of freedom of the beam.

6.1 Lateral Torsional Buckling of a Single Span Girder

The first example is a single span girder with length L = 150 cm where an axial force F
is applied at the centroid. Fig. 2 shows the cross–section of the channel section beam.
The ratio of the width of the flange to the height of the web is relatively large. This
type of cross–section is fairly sensitive against torsional buckling. The geometrical and
material data are given in (75), where the moments of inertia are denoted according to the
definitions in (51). The section quantities are determined with the finite element program
as is described in [16].
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Figure 2: Cross–section of a single span girder

b = 10.0 cm A = 5.92 cm2

h = 10.0 cm I33 = 110.8 cm4

s = 0.2 cm I22 = 64.49 cm4

t = 0.2 cm IT = 0.0792 cm4

m2 = 7.55 cm Iw̃ = 1108.2 cm6

E = 21000 kN/cm2

G = 8077 kN/cm2

(75)

The boundary conditions are chosen as follows: The displacements at both supports
except the axial displacement at the loaded cross–section are fixed. Furthermore the
torsion angle is fixed at both ends. The other degrees of freedom are not restrained. The
theoretical solution based on a second–order geometrical nonlinear Bernoulli beam theory
including torsion–warping deformation may be found e.g. in Kollbrunner and Meister
[19]. For this purpose we compute the following reference quantities with n = 1 for the
lowest eigenvalue

F1 := n2 π2EI22

L2
= 594.0 kN

F2 := n2 π2EI33

L2
= 1020.0 kN

F3 :=
1

i2M
(GIT + n2 π2EIw̃

L2
) = 125.1 kN .

(76)

Here, i2M = i2P +m2
2 follows with i2P = (I22 + I33)/A. Furthermore F1 describes the critical

load for buckling in the symmetry plane. The theoretical critical load is given according
to

Fcr = 2


(

1

F2

+
1

F3

)
+

√(
1

F2

− 1

F3

)2

+
4

F2 F3

(
m2

iM

)2


−1

= 115.4 kN . (77)



As the result shows Fcr is close to the pure torsional buckling load F3. Thus one obtains
a significant reduction of the critical load perpendicular to the symmetry plane due to
torsional buckling.
For the numerical solution we discretize the beam with 4, 8 and 16 three–noded beam
elements. The boundary conditions are set as described above. We solve the eigenvalue
problem

(KT − ω21)Φ = 0 (78)

where the contribution of the element nodes to the tangential stiffness matrix KT are given
in (65). The critical loads Fcr are characterized by zero–eigenvalues ωi with associated
eigenvectors Φi. The minimum values for the different discretizations are given in table
1. As can be seen the agreement of our results with the solution of the second–order
geometrical nonlinear Bernoulli theory is very good.

Table 1: Critical loads of the axially compressed single span girder

numel Fcr in kN
4 115.3
8 115.0

16 115.0

analytical 115.4



6.2 Channel–section beam

A channel–section beam clamped at one end and subjected to a tip force at the free end is
investigated next, see Fig. 3. We assume linear elastic and ideal plastic material behaviour
with constants according to Fig. 3. The yield stress is y0 = 36 kN/cm2. The developed
beam model is compared with a shell model. The discretization is performed with 30
two–noded beam elements and in the second case with 360 four–noded shell elements.
The shell discretization consists of 36 elements along the length direction, 6 elements
along the web and 2 elements for each flange. In the following the vertical displacement
w of point O at the cantilever tip is computed. For the elastic–plastic case we load up to
a tip displacement w = 250 cm and then unload the structure.
The results for both models agree very good in the total range of the computed load de-
flection curve, see Fig. 4. This holds for elastic as well as for inelastic material behaviour.
Fig. 5 shows a plot of the von Mises stresses according to eq. (38) for the ultimate state
and the unloaded state. In Fig. 6 the stress distribution of the cross–section at a distance
of 225 cm from the clamped end is given again for the ultimate state and the unloaded
state. In the first case the cross–section is completely plastified, whereas in the second
case residual stresses can be seen.
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Figure 3: Channel–section beam with geometrical and material data
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Figure 4: Load deflection curves of the channel–section beam
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Figure 5: Von Mises stresses in kN/cm2 for the ultimate state and unloaded state
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Figure 6: Von Mises stresses in kN/cm2 of the cross–section at a distance of 225 cm from
the clamped end for the ultimate state and unloaded state



6.3 Stiffened plate

With the last example coupling of the beam element with shell elements is investigated.
Fig. 7 shows the cross–section of a rectangular plate of length � and width b with an
L–shaped stiffener. The structure is loaded by a single force, see Fig. 7. The geometrical
and material data are given as follows

� = 300 cm
b = 80 cm
t = 0.5 cm

E = 21000 kN/cm2

ν = 0.3
y0 = 36 kN/cm2

K = 0
.

(79)

For comparison we apply two types of different discretizations. In both cases the plate
is modeled using 20 four–noded shell elements in length direction and 10 elements in
transverse direction. In the first case the L– shaped stiffener is discretized with 20 shell
elements in length direction, 3 elements for the vertical leg and 2 elements for the hor-
izontal leg. In the second case 20 two–noded beam elements are used. A computation
without stiffener shows that the beam leads to a significant reduction of the deforma-
tion. The vertical displacement of the loading point is depicted in Fig. 8 for elastic and
elastic–plastic material behaviour. Both models are in good agreement in large ranges of
the computed load deflection curve. Plots of the von Mises stresses and of the equivalent
plastic strains are depicted in Fig. 9, 10 and 11. The maximum plastic strain is about
5%. Fig. 11 shows that the structure undergoes large deformations.
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Figure 7: Clamped rectangular plate with stiffener
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Figure 8: Load deflection curves of the stiffened plate
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Figure 9: Von Mises stresses in kN/cm2 for the stiffened plate at w = 25 cm
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Figure 10: Von Mises stresses in kN/cm2 for the stiffener at the clamped cross–section at
w = 25 cm
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Figure 11: Equivalent plastic strains of the stiffened plate



7 CONCLUSIONS

In this paper a theory for three–dimensional beams with arbitrary cross–sections and an
associated finite element formulation is developed. The beam strains are derived from the
Green–Lagrangian strain tensor. Elastoplastic material behaviour applying the von Mises
yield condition and associated flow rule is considered. Due to the nonlinear stress–strain
relations the stress resultants and associated linearizations are obtained by numerical in-
tegration over the cross–sections. A finite beam element is developed using Lagrangian
interpolation functions to approximate the kinematic quantities. Each node of the ele-
ment possesses seven degrees of freedom. The basis systems at the nodes are evaluated
using orthogonal transformations. Due to the chosen finite element approximation the lin-
earization yields relative simple expressions for the symmetric tangent matrix. Examples
show the applicability of the developed beam element applied to geometrical and physical
nonlinear problems. Alternative discretizations of thin–walled cross–sections with shell
elements show good agreement between the different models. Thus, the derived element
can effectively be used to analyze the load–carrying capacities of spatial beam structures.



A APPENDIX

A.1 Proof of integrals (52)

Using (3)1 the following integral is reformulated such that Green’s formula can be applied.
Hence inserting boundary condition (3)2 yields∫

A

w̄,2 dA =
∫
A

[(ξ2w̄,2 ),2 +(ξ2w̄,3 ),3 ] dA =
∮
C

[ξ2(w̄,2 n2 + w̄,3 n3)] dC

=
∮
C

[ξ2(ξ3n2 − ξ2n3)] dC .
(80)

Again application of Green’s formula and considering (51)1 leads to∮
C

[ξ2(ξ3n2 − ξ2n3)] dC =
∫
A

[(ξ2ξ3),2 −ξ2
2 ,3 ] dA =

∫
A

ξ3 dA = A s3 (81)

which proves (52)1. Proceeding in an analogous way leads to (52)2.

The following integral is reformulated in the same way as done above. Thus, we apply
(3)1, Green’s formula and boundary condition (3)2∫

A

(w̄,22 +w̄,23 ) dA =
∫
A

[(w̄ w̄,2 ),2 +(w̄ w̄,3 ),3 ] dA

=
∮
C

[w̄(w̄,2 n2 + w̄,3 n3)] dC =
∮
C

w̄ (ξ3n2 − ξ2n3) dC .
(82)

Again application of Green’s formula and considering the definition of Saint–Venant tor-
sion modulus (51)4 yields∮

C

w̄(ξ3n2 − ξ2n3) dC =
∫
A

(w̄,2 ξ3 − w̄,3 ξ2) dA = I0 − IT (83)

which proves (52)3.

Next using (4) and (5) we get∫
A

w̄ξ2 dA =
∫
A

(ξ̄2 + s2)(w̃ − m2ξ̄3 + m3ξ̄2) dA = Ī22m3 − Ī23m2 = Iw̄2 (84)

which yields (52)4. The expression for Iw̄3 is obtained in an analogous way. Finally eq.
(52)6 can be derived considering the orthogonality conditions (4) and definition (5).

A.2 First Variation of the Orthogonal Basis System

The current orthogonal basis system can be written using the Rodrigues formula (57)

ai = Rei R = 1 +
sin ω

ω
Ω +

1 − cos ω

ω2
Ω2 (85)

where ω = |ω| and Ω = skew ω. To alleviate the notation the node index is omitted. The
first variation, denoted here by the symbol δ, yields

δai = δRei = δRRTai = δw × ai (86)



with

δR =
sin ω

ω
δΩ +

1 − cos ω

ω2
(δΩΩ + ΩδΩ)

+
[
ω cos ω − sin ω

ω2
Ω +

ω sin ω + 2 cos ω − 2

ω3
Ω2

]
δω

RT = 1 − sin ω

ω
Ω +

1 − cos ω

ω2
Ω2

(87)

with δω = (ω · δω)/ω. Inserting the identities

Ω2 = ω ⊗ ω − ω21 Ω3 = −ω2Ω δΩΩ = ω ⊗ δω − (ω · δω)1 (88)

yields after some lengthy algebraic manipulation the skew–symmetric tensor

δRRT = (1 − c2ω
2)δΩ + c1 (ΩδΩ − δΩΩ) + c2 (ω · δω)Ω

c1 =
1 − cos ω

ω2
, c2 =

ω − sin ω

ω3
.

(89)

The associated axial vector reads

δw = H δω , H = 1 + c1 Ω + c2 Ω2 . (90)

A.3 Second Variation of the Orthogonal Basis System

The second variation of the orthogonal basis system is denoted by ∆. One obtains for all
h ∈ R3

h · ∆δai = h · ∆(δw × ai)

= h · [δw × (∆w × ai) + ∆H δω × ai]

= δw · [ai ⊗ h − (ai · h)1] ∆w + bi · ∆H δω

(91)

where bi = ai × h. The second part in (91) yields with ∆ω = (ω · ∆ω)/ω

bi · ∆H δω = bi · [(∂c1

∂ω
Ω +

∂c2

∂ω
Ω2)∆ω + c1∆Ω + c2(∆ΩΩ + Ω∆Ω)] δω

= δω · {[(−c4Ω + c5Ω
2)bi ⊗ ω] ∆ω + c1bi × ∆ω + c2(∆ΩΩ + Ω∆Ω)bi}

(92)
with

c3 =
ω sin ω + 2 cos ω − 2

ω2(cos ω − 1)

c4 =
1

ω

∂c1

∂ω
= −c1 c3 , c5 =

1

ω

∂c2

∂ω
= c6 − c2 c3 , c6 =

c3 − c2

ω2
.

(93)

Considering
∆ΩΩbi = (bi × ω) × ∆ω

Ω∆Ωbi = [(bi · ω)1 − bi ⊗ ω] ∆ω

Di := c1Bi + c2Ci

Bi := h ⊗ ai − ai ⊗ h

Ci := ω ⊗ bi − bi ⊗ ω

si := (−c2 1 − c4 Ω + c5 Ω2)bi

(94)



we get
bi · ∆H δω = δω · [si ⊗ ω + Di + c2(bi · ω)1] ∆ω . (95)

Inserting this result into (91) yields

h · ∆δai = δw · Mi ∆w

Mi = ai ⊗ h − (ai · h)1 + HT−1 [si ⊗ ω + Di + c2(bi · ω)1]H−1 .
(96)

Within a multiplicative update procedure as is applied in [7] or [8] the last term in
(96) is missing and one obtains a non–symmetric tangent operator. It follows if δw =
δω is chosen, thus H = 1. However, this is justified for a multiplicative procedure
with unknown rotation increments ∆ω since H(∆ω) approaches the unit tensor at an
equilibrium configuration.
The symmetry of Mi is shown in the following. For this purpose Mi is split in a symmetric
and a skew–symmetric part, thus Mi = MS

i +MA
i where we show that the skew–symmetric

part cancels out. We introduce

wi := HT−1si = −c3bi + c6 (bi · ω) ω

HT−1 ω = ω
(97)

where the first eq. follows immediately by multiplying (97)1 with HT , comparing the
coefficients and considering (93). The second equation is evident with (74) and Ωω = 0.
One obtains

MA
i =

1

2
(Mi − MT

i )

=
1

2
(ai ⊗ h − h ⊗ ai) − 1

2
c3(bi ⊗ ω − ω ⊗ bi) + HT−1 Di H

−1

= −1

2
Bi +

1

2
c3Ci + HT−1 Di H

−1 .

(98)

Considering (74) we get

HT−1 Di H
−1 = Di + 1

2
(ΩDi − DiΩ) + 1

2
c3(Ω

2Di + DiΩ
2)

+1
4
c3(ΩDiΩ

2 − Ω2DiΩ) − 1
4
ΩDiΩ + 1

4
c2
3Ω

2DiΩ
2

(99)

with
DiΩ = ω ⊗ di − (di · ω)1

ΩDiΩ = −(di · ω)Ω

ΩDiΩ
2 = Ω2DiΩ = −(di · ω)Ω2

Ω2Di + DiΩ
2 = −(di · ω)Ω − ω2Di

Ω2DiΩ
2 = ω2(di · ω)Ω

(100)

thus
HT−1 Di H

−1 = c7 Di + 1
2
(ΩDi − DiΩ) + c8(di · ω)Ω

c7 = 1 − 1
2
c3ω

2 c8 = 1
4
− 1

2
c3 + 1

4
c2
3ω

2
(101)

with di = c1 bi + c2 bi × ω.
Using di · ω = c1bi · ω, (94)3 and

1

2
(ΩDi − DiΩ) = −1

2
c2(bi · ω)Ω +

1

2
c2ω

2 Bi − 1

2
c1 Ci (102)



one obtains the final version of the skew–symmetric part as

MA
i = (c1c8 − 1

2
c2) (bi · ω)Ω + (−1

2
+ c1c7 +

1

2
c2ω

2)Bi + (
1

2
c3 + c2c7 − 1

2
c1)Ci , (103)

where one can easily show that the coefficients vanish, and thus MA
i ≡ 0.

The symmetric part of Mi reads

MS
i = 1

2
(Mi + MT

i )

= 1
2
(ai ⊗ h + h ⊗ ai) − (ai · h)1 + 1

2
(wi ⊗ ω + ω ⊗ wi) + c2(bi · ω)HT−1 H−1

(104)
and with H−1 according to (74) and (88)

HT−1H−1 = 1 + c9Ω
2 c9 = −1

4
+ c3 − 1

4
ω2c2

3 (105)

we may express (104) as follows

MS
i = 1

2
(ai ⊗ h + h ⊗ ai) + 1

2
(ti ⊗ ω + ω ⊗ ti) + c101

ti = −c3 bi + (c6 + c2c9) (bi · ω) ω

c10 = c2(1 − c9 ω2) (bi · ω) − (ai · h) .

(106)

Applying a multiplicative update procedure the rotational parameters ω are replaced by
∆ω which vanish in the Newton iteration process. Thus all terms in ω in eq. (106) cancel
out. This again shows that M becomes symmetric at an equilibrium configuration within
the multiplicative procedure [7].
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9. A. Cardona and M. Géradin, A beam finite element non–linear theory with finite
rotations, Int. J. Num. Meth. Engng. 26 (1988) 2403–2438. 1
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14. P. Betsch, A. Menzel, E. Stein, On the parametrization of finite rotations in com-
putational mechanics A classification of concepts with application to smooth shells,
Comp. Meth. Appl. Mech. Engrg. 155 (1998) 273–305. 2

15. S.P. Timoshenko and J.N. Goodier, Theory of Elasticity, 3rd edition, McGraw–Hill
International Book Company, 1984. 2



16. F. Gruttmann, W. Wagner and R. Sauer, Zur Berechnung von Wölbfunktion und Tor-
sionskennwerten beliebiger Stabquerschnitte mit der Methode der finiten Elemente,
Bauingenieur 73(3) (1998) 138–143. 3.3, 4.2, 6.1

17. F. Gruttmann, R. Sauer and W. Wagner W, A geometrical nonlinear eccentric 3D–
beam element with arbitrary cross–sections, Comp. Meth. Appl. Mech. Engrg. 160
(1998) 383–400. 3.1, 4.2

18. O.C. Zienkiewicz and R.L. Taylor, The Finite Element Method, 4th edition, Volume
1 (McGraw Hill, London, 1988). 6

19. C.F. Kollbrunner and M. Meister, Knicken, Biegedrillknicken, Kippen : Theorie und
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