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1 Introduction

Finite element calculations are performed for an axially compressed stiffened CFRP panel. This
panel was earlier investigated experimentally by DLR in Braunschweig, Germany. Experimental data
are available. The panel consists of a skin with nominally cylindrical shape, which is stiffened by
stringers. The stringers are partially separated from the skin. Simulations are performed only for the
undamaged panel. The DLR benchmark panel and its tests are described in [3].
Calculations are performed with:� FE-code: an extended Version of Finite Element Program FEAP, described in [7]� Computer: DELL C-800 Notebook, 800 MHz Pentium III Mobile, 512 MB RAM,

operating system Windows 2000 Professional
Units used within all calculations are:� Length, displacements: mm� Forces: kN

2 Geometry of the panel, laminate set-up, material properties

The panel, described in [3], is one sixth (60
�
) of a cylinder of 800 mm height and 400 mm radius,

see table 1. At the inner side 6 stringers are applied in axial direction at equal distances (10
�

angular
distance).

Panel length l = 800 mm
Free length (maximum buckling length) l � = 620 mm
Radius (nominal value!) r = 400 mm
Average of the radii of the panel r � 370.9 mm
Arc length a = 419 mm
Number of stringers n = 6
Distance stringer to stringer d = a / 6
Distance stringer to longitudinal edge e = d / 2
Laminate set-up of skin [90, +45, -45, 0]s
Laminate set-up of stringers blade [(+45, -45)3, 06]s
Ply thickness t = 0.125 mm
Stringer height h = 14 mm
Stringer width f = 37.9 mm

Table 1: Geometrical data of the panel

All laminate layers are unidirectional and made from the same material. The associated material data
are depicted in 2, see [3]: The lay-up and the fiber orientation for the stringer are shown in Fig. 1.

3 Loading and constraints

From the experiments it is known that the upper and lower border of the panel are fixed up to a height
of 90 mm in stiff clamping boxes, see Fig. 2. The panel is then subjected to a uniform compressing
displacement of the upper border resulting from a movement of the upper clamping box.
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Longitudinal modulus of elasticity
(in axial direction of panel) E ��� = 141 kN/mm

�
Transverse modulus of elasticity E ��� = 11 kN/mm

�
In-plane Shear modulus G � � = 6.29 kN/mm

�
Transverse shear moduli G �	� = 6.29 kN/mm

�
G � � = 4.29 kN/mm

�
Poisson’s ratio 
 = 0.3
Material density (not given in [3]/, estimated to) r = 1.6 �
������� kg / mm �

Table 2: Material data of the panel
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Figure 1: Lay-up of the stringer (from [3])

Lateral supports as shown in Fig. 3 are supplied. They have a height of 600 mm, leaving free
distances of 10 mm between their ends and the clamping boxes. The lateral clamping comes to a
width of 25 mm, covering not only the skin, but also a part of the flange of the neighbouring stringer
(not represented in the figure).
In the numerical model the following boundary constraints have been introduced, see Fig. 4:
Top and bottom (first and second row of nodes): axial displacements are free, horizontal and radial
displacements and all rotations are fixed. In addition the axial displacement is fixed at the bottom
(first row). At top all nodes are linked in axial direction. Thus, the same displacement is introduced
for all nodes. At the lateral edges only radial displacements have been fixed, see Fig. 4. A more
realistic type of boundary condition may be that all nodes at the lateral edges are only linked together.
This mean that all nodes at the edges have same displacements. This type of boundary condition has
been used in some calculations. The test facility and a principal view of the experiment at DLR are
presented in Fig. 5.
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Figure 2: Boundary conditions at loaded edges (from [3])

Edge support

Filler

Gliding plane

Test panel

Detail

Figure 3: Support of the lateral panel edges (from [3])
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Figure 4: FE–mesh of the panel and boundary conditions

Figure 5: Test facility and principal view of the experiment (from [3])
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4 FE–modeling

4.1 Elements

Within the numerical analysis two strategies have been introduced . The first one is to use 3D–type
elements with a special layer technique, the second one is to use layered thin shell elements.
Hexahedral elements based on standard displacement formulations exhibit a severe locking behaviour,
especially if these elements are applied to thin structures. It is well known that the standard isopara-
metric eight–node element with trilinear shape functions can be essentially improved when applying
the assumed strain method (ANS) to some strain components. Following [1] the transverse shear
strains of the middle plane are independently interpolated using special shape functions. The thick-
ness strains are approximated considering the approach in [2]. Furthermore, the membrane behaviour
is improved by applying the enhanced assumed strain method (EAS) with five or more parameters
[4]. A variational formulation and detailed finite element equations of an ANS–EAS5–element can
be found in [5].
Shell–elements based on the so–called first order shear deformation theory are quite standard. Con-
cerning theoretical and numerical details for such formulations we refer to the literature. A straight
forward formulation where finite rotations are taken into account is described in [6] and has been used
in the current analysis. The reference surface of the element can be chosen everywhere. Thus nodes
at top or bottom of the element are possible.
Both element formulations have a consistent tangent matrix. Thus quadratic convergence can be
achieved within the numerical iterative analysis.

4.2 Material law

In both element formulations an orthotropic material law with linear elastic material behaviour has
been used. The lay-up is described within the shell–element in an analytical integration process over
the thickness. Within the 3D-element it is possible to summarize some layers in on element or to
choose only one layer per element. A numerical integration procedure has to be used. Details of this
procedure are described in [5].

4.3 Discretization

4.3.1 Hexahedral element

FE–meshes are introduced with 4-6 elements for the skin between the stringers, which lead to 120
elements in circumferential direction. In vertical directions meshes with 40/60/80 and 90 elements
and 2+2 elements for the clamping area are used. Furthermore the stringer blades are discretized with
up to 4 elements. Meshes can be seen in Fig. 6. The reference surface is the mid–surface of the
skin. No imperfections have been used. The damaged areas are not discretized. The radius of the
mid–surface of the cylindrical skin has been chosen to r = 370.9 mm according to [3]. The influence
of different numbers of elements in vertical direction has been studied. Results for associated critical
loads within a nonlinear analysis are depicted in Fig. 7. In total 4 different discretization models for
the stringers have been used, see Fig. 8. The associated FE–meshes are described in Table 3
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Figure 6: Discretization with Hexahedral elements

Mesh nodes elements

1 27318 10080
2 33582 11592
3 23142 7560
4 38734 14976

Table 3: Data of introduced FE–Hexahedral–meshes
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Figure 7: Critical load with respect to discretization
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Mesh Stringer–model Layup in stringer base
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Figure 8: Stringer modeling with hexahedral elements
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4.3.2 Shell element

Three meshes with the following data have been chosen, see Table 4:

Mesh nodes elements elements circ. elements vertical dofs

1 851 660 24 20+2 3407
2 2623 2268 48 40+2 12591
3 4171 3780 84 40+2 21087

Table 4: Data of introduced FE–shell–meshes

It has been tested from the hexahedral element discretization that not more than 40 elements are
necessary in vertical direction to have a proper mesh. In horizontal direction 4 elements (only 2 for
mesh 1) have been used for the skin between the stringers whereas the other elements are used for
the stringers with different fine models. The different meshes are depicted in Fig. 9. The reference
surface is the mid–surface of the skin. No imperfections have been used. The damaged areas are not
discretized. The radius of the mid–surface of the cylindrical skin has been chosen to r = 370.9 mm
according to [3].
The blade of the stringer is discretized with one element. The different stringer models for meshes
1–3 are depicted in Fig. 10.
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Figure 9: FE–meshes with shell elements (models 1–3)
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Figure 10: Stringer models for FE–meshes 1–3
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5 Types of analyses

5.1 Solution methods

The geometrical nonlinear behaviour is calculated within several load/displacement or time steps.
Solution points with an equilibrium state are found using a Newton–Raphson algorithm. All used
elements have consistent tangent matrices. As a consequence quadratic convergence can be achieved.
At top of the introduced meshes all nodes are linked in axial direction. Thus, the same displacement
is chosen for all nodes.
Within the static analysis an arc–length procedure with arc–length control as well as displacement
control has been used. An accompanying eigenvalue analysis lead to the associated nonlinear buckling
loads. Furthermore linear buckling loads can be calculated.
Within the dynamic analysis an implicit Newmark–algorithm without damping has been used.

5.2 Computations

Due to the nearly linear behaviour in the prebuckling range a large load step of about 100 kN can be
used. Afterwards steps were prescribed by the solution algorithm.
Dynamic algorithms are started at load level of 100 kN.
The convergence tolerance is �%�&����� � � for the energy norm within the Newton–procedure and �%�&���'� � �
within the eigenvalue computation via a subspace algorithm.

6 Results

6.1 Static analysis with hexahedral elements

Results of the load–deflection curves for the static analysis with hexahedral elements are depicted
in Fig. 11 for the different models, defined in Fig. 8 in comparison to the experimental results
[3]. For meshes 1, 2, 4 the initial stiffness of the panel is described as in the experiment. The
associated buckling loads are presented in Table 5. It can be seen that the results for mesh 3, where
the eccentricity of the stringer is not modeled, are not correct. Furthermore the results show that there
is a rather big influence of the stringer design in the numerical model.

Mesh nodes elements buckling load
F (*),+.- in [kN]

1 27318 10080 122.95
2 33582 11592 118.75
3 23142 7560 73.75
4 38734 14976 135.00

Table 5: Buckling loads for different hexahedral FE–meshes

The associated 1 / - and 2 0�1 buckling modes are depicted in the following in Figs. 12–15.
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Figure 11: Load deflection curves for hexahedral–meshes 1–4
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Figure 12: Hexahedral–mesh 1: 1 / - and 2 0�1 buckling mode at F (*),+.- = 122.95 kN

Figure 13: Hexahedral–mesh 2: 1 / - and 2 0�1 buckling mode at F (*),+.- = 118.75 kN
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Figure 14: Hexahedral–mesh 3: 1 / - and 2 0�1 buckling mode at F (*),+.- = 73.75 kN

Figure 15: Hexahedral–mesh 4: 1 / - and 2 0�1 buckling mode at F (*),+.- = 135.00 kN
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6.2 Static analysis with shell elements

Results of the load–deflection curves for the static analysis with shell elements are depicted in Fig.
16 for the different models, defined in Fig. 9 in comparison to the experimental results [3]. The
associated buckling loads are presented in Table 6. It can be seen that the course mesh 1 lead to stiff
results whereas the other two meshes lead to a nearly correct behaviour.
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Figure 16: Load deflection curves for shell–meshes 1–3

Mesh nodes elements buckling load
F (2)3+.- in [kN]

1 851 660 152
2 2623 2268 132
3 4171 3780 119

Table 6: Buckling loads for the different shell FE–meshes

Results for mesh 1 are depicted in Figs. 17–21. Tha axial and radial displacements at the buckling
point can be found in Figs. 17–18, whereas the radial displacements of the first three eigenvectors at
the buckling point are presented in Figs. 19–21.
Results for mesh 2 are depicted in Figs. 22–29. Tha radial displacements at the buckling point can be
found in Fig. 22. After a local buckling point, depicted in Fig. 23, the radial displacement changes
to a local buckling behaviour, which can be seen in Figs. 24–25. The radial displacements of four
eigenvectors at the buckling point are presented in Figs. 26–29. It can be seen that the decisive first
eigenvector is now dominated by local buckling behaviour.
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Figure 17: Mesh 1: Axial displacements
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Figure 18: Mesh 1: Radial displacements
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Figure 19: Mesh 1: Radial displacements for eigenvector 1
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Figure 20: Mesh 1: Radial displacements for eigenvector 2
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Figure 21: Mesh 1: Radial displacements for eigenvector 3
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Figure 22: Mesh 2: Radial displacements
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Figure 24: Mesh 2: Radial displacements after local buckling
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Figure 25: Mesh 2: Deformed mesh after local buckling (scale=20)
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Figure 26: Mesh 2: Radial displacements for eigenvector 1
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Figure 27: Mesh 2: Radial displacements for eigenvector 5
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Figure 28: Mesh 2: Radial displacements for eigenvector 10

23



1 1

2 3

1 1

2 3

EIGV11 DISPL  1

-2.060E-01 min

-1.765E-01

-1.471E-01

-1.177E-01

-8.827E-02

-5.884E-02

-2.942E-02

1.474E-06

2.942E-02

5.885E-02

8.827E-02

1.177E-01

1.471E-01

1.765E-01

2.060E-01 max

1 1

2 3

1 1

2 3

EIGV11 DISPL  1

-2.060E-01 min

-1.765E-01

-1.471E-01

-1.177E-01

-8.827E-02

-5.884E-02

-2.942E-02

1.474E-06

2.942E-02

5.885E-02

8.827E-02

1.177E-01

1.471E-01

1.765E-01

2.060E-01 max

Figure 29: Mesh 2: Radial displacements for eigenvector 11
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6.3 Comparison of results from hexahedral and shell elements

Results for calculations with hexahedral and shell elements are depicted in Fig. 30. It can be seen
clearly that acceptable results can be achieved with both models. It is surprising that the axial stiffness
of shell models is about 10 % too high whereas the hexahedral models lead to a nearly exact behaviour.
This may depend on the strong influence of the stringer models, see Figs. 8, 10. Especially for the
hexahedral case coarse models have been used. Thus, the good hexhedral results may be by chance.
Furthermore the mentioned element modifications may lead to a more weak element behaviour.
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Figure 30: Load deflection curves for discretizations with hexahedral– and shell–elements

6.4 Differences in linear shell analysis

It can be seen that there exist differences in the linear axial stiffness of about 10 % between experiment
and numerical analysis. These differences may depend on a certain weakness of the gypsum at the
bottom of the panel in experiment. A simple numerical model may be the introduction of an elastic
foundation, see Fig. 31.
The stiffness of the spring can be calculated from 46587:9<;= 7:9?> -= 7A@"BDCFEHGIC�J�KMLD4ON which lead toP4Q5R7S4O5%LUTWV � 1YX3/ . The following parameter have been chosen, see table 7.

elasticity modulus, gypsum? Z gypsum = GI�I�D�[KML\N]N �
length ^ =

� ��CFEH_"B�N]N
thickness of skin ` = �aN]N
assumed height of boundary b = BcN]N

Table 7: Material parameters for an assumed elastic foundation

These values may be realistic. For comparison the elastic modulus of brickwork: Z brickwork 7
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Figure 31: Elastic foundation(Spring at lower bound)

GI�I�D� � �dBD�I�D�eKML\N]N �
is mentioned. Other possible reasons may be discussed in the report of the

DLR.

6.5 Dynamic analysis with shell elements

Results for dynamic analysis are only available for calculations with shell–elements. As mentioned
before an (implicit) Newmark–algorithm has been used without any numerical damping. As before
no imperfections and no damage areas are incorporated in the discretization. Furthermore mesh 3 has
been chosen with respect to computation time, which lead in generell to relatively stiff results, see
Table 6.

GARTEUR Benchmark 3

0,0000

20,0000

40,0000

60,0000

80,0000

100,0000

120,0000

140,0000

160,0000

180,0000

200,0000

0,000 1,000 2,000 3,000 4,000 5,000

axial displacement [mm]

ve
rt

ic
al

lo
ad

[k
N

]

Experiment 66
Experiment 67
Dynamic, Rho = 1.6e-3
Dynamic, Rho = 1.6e-2

Figure 32: Load deflection curves for shell–mesh3 and different values of f
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7 Conclusions

The DLR benchmark panel consists of a skin with nominally cylindrical shape, which is stiffened by
stringers. The stringers are partially separated from the skin. This panel had been axially compressed
until collapse. In this report numerical methods to describe the static and dynamic nonlinear behaviour
of the panel have been reported. Results for calculations with hexahedral and shell elements are given.
Acceptable results can be achieved with both models. These depend strongly on influence of the
stringer models. The FE simulations with shell elements overestimated the initial axial stiffness by
about 10 % as compared with the stiffness in the experiment whereas calculations with the hexahedral
models lead to a nearly exact behaviour.
Finally, it can be stated that the FE-algorithms and -elements can be used for the simulation of the
DLR benchmark. However, the nonlinear simulations required long computing times which may not
be acceptable for daily design purposes in industrial applications.
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