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Abstract. 3D finite element modeling of fiber-matrix instabilities in com-
pression is presented. Calculations for simple particular 3D cases are carried
out. The presented examples illustrate the selection of models with and with-
out surface effects. The formulation can be readily extended to problems with
transversely isotropic elastic fibers.

1. Introduction. The behavior of fiber-reinforced materials in compres-
sion along the reinforcement is an important issue, since a variety of compres-
sive failure mechanisms are reported in the literature. A substantial amount
of work has already been done in this field, reflected in numerous literature
sources. Without pretending to be exhaustive we discuss here briefly some
aspects of the question in order to outline the motivation of this contribution.
Instabilities at the micro level of scale, or fiber-matrix instabilities (microbuck-
ling) represent a limiting factor for compressive strength of fiber-reinforced
composite materials. These phenomena, which are similar to longitudinal
bending of a beam on an elastic foundation (Timoshenko and Gere, 1961),
were first mentioned and modeled in 60s (Dow and Grunfest, 1960; Rosen,
1965; Schuerch, 1966; Sadovsky et al., 1967; Guz, 1969; etc). Rosen (1965)
and Schuerch (1966) presented models which considered fibers and matrix as
layers. Sadovsky et al. (1967) proposed a combination of a 1D consideration
for a fiber with a 3D one for the matrix. Guz (1969) presented a 3D linearized
approach to study the instability of a double-periodic system of fibers in an
infinite elastic matrix. Reviews and literature on compressive behavior of fiber



composites are given in Guynn et al. (1992), Guz (1992), Schultheisz and
Waas (1996), Fleck (1997), and others. Results and bibliography on 3D mod-
els and methods of stability theory of composites are reviewed, for example,
in Guz (1992) and Guz and Lapusta (1999). Closely related issues concern-
ing buckling and accompanying phenomena at different scales are discussed,
among others, in Wagner et al. (2001), Guz (2002), Lapusta and Wagner
(2001), Tkachenko and Chekhov (2002), Zhuk et al. (2002), etc. Note that
the majority of existing microbuckling models for fiber composites are limited
to 2D considerations. 3D micromechanical modeling of fiber-matrix instabili-
ties, especially by means of 3D finite elements, has obtained substantially less
attention. However, the stress-strain fields around fibers are essentially three-
dimensional. This means that 3D formulations are preferable if more rigorous
results on fiber microbuckling are needed. This paper presents an attempt of
3D finite element modeling of fiber-matrix instabilities in compression. Cal-
culations for some particular 3D cases are carried out to illustrate selection
of models with and without surface effects. The formulation can be readily
extended to problems with transversely isotropic elastic fibers.

2. Finite-element model. We consider a 3D fiber-matrix instability
problem (Fig. 1). The system consists of a long fiber and a matrix. It is
compressed along the fiber direction z;. The matrix is assumed to be wide
enough to exclude unwanted lateral surface effects and Euler buckling of the
whole system.
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Fig. 1. Schematic representation of a

system fiber-matrix under compression. Fig. 2. Characteristic cell.
The lateral surfaces of the matrix are free of forces

Fr=0, F'=0, F"=0. (1)



A perfect adhesion of the fiber (denoted by superscript f) and the matrix
(superscript m) is assumed, which means the continuity of forces and displace-
ments across the interface

n n

uh =y, ul =l uf =, (2)
The value of the loading parameter leading to buckling of the system and the
corresponding buckling half wavelength 0 < L < oo must be calculated. To
carry out finite element modeling, we consider characteristic cells as presented
in Figs. 2-4. Two possible situations are considered. In the first one, we
assume that the matrix has a circular or square cross section and the fiber
is situated in its center (Figs. 3 and 4, b = ¢). In the second one we admit
that the matrix has a rectangular cross-section and the fiber is situated in the
vicinity of one of the matrix lateral surfaces (Fig. 4, 0 < ¢ < b).
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Fig. 3. Case/Geometry 1 (cross-section). Fig. 4. Case/Geometry 2 (cross-section).

These characteristic cells are selected by accounting for the periodicity of the
buckling form in the direction x; (period 2L=2h). The Euler buckling of the
cell is excluded by the selection of its geometry, since the cell is taken wide
enough in transverse directions.

An extended version of the finite element program FEAP (see e.g. Zienkiewicz
and Taylor, 2000) is used. A standard displacement-based eight node isopara-
metric solid finite element with trilinear shape functions is employed to dis-
cretize the characteristic cells. The symmetry of the cells and of their eigen-
forms are taken into account (see e.g. Figs. 5, 6 and 10). Behavior of the fiber
and the matrix is modeled by a linearly elastic material. For the calculations,
the values B/ = 0,4-10'2 Pa, E™ = 0,2-10'° Pa, v/ = v™ =0,3,d = 0,8-107°
(m) are taken. To save the calculation time, the transverse dimensions of the
elementary cell are chosen to b = h. In case 2 (Fig. 4), we also place the



fiber in the vicinity of one of the lateral surfaces by setting 0 < ¢ < b. This
way we account for its influence on the fiber stability. The cell is compressed
through prescribed displacements u; of the nodes at the linked surface (Fig.
2). These displacements are stepwise increased from zero. Due to the sym-
metry of the system and its eigenforms, we suppress the displacements uy of
the symmetry plane (x1,23). A bisection method is used to find the stability
point within a certain prescribed accuracy. Then an eigenvalue analysis leads
to the associated eigenforms.

The height h of the characteristic cell is stepwise increased and the critical
displacement w; is calculated as a function of the buckling half wavelength L
(which is equal to h). Thus functions u;/L = f(L/d) can be found. Since
sufficiently long fibers buckle with a certain wavelength corresponding to the
shortening minimum, a minimization of the calculated value w; /L with respect
to the parameter L/d is performed.

3. Results. Figs. 5, 6 and 10 show examples of the calculated eigenforms
and the chosen 3D mesh.
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Fig. 5. Buckling form and mesh for case 1. Fig. 6. Buckling form and mesh for case 2.

Figs 7 and 8 show values u;/L with respect to the ratio L/d. To analyze
free surface effects, we have also performed calculations for different values of
spacing ¢ between the fiber and the matrix boundary (0 < ¢ < b). Note that
for this case, Lapusta and Wagner (2001) presented a semi-analytical study
which distinguished between two different instability mode orientations with
respect to the free boundary. These are: (a) mode towards the boundary,
which is symmetric with respect to the plane that contains the fiber’s axis and
is perpendicular to the boundary (mode 1), and (b) mode for which the fiber
buckles out of the mentioned plane (mode 2).
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Fig. 7. uy/L calculated for case/geometry 1. Fig. 8. u;/L calculated for case/geometry 2.

Since the mentioned above paper demonstrated that only mode 1 was critical,
we have limited our consideration to the case of mode 1. In this case, we use
symmetry and calculate the eigenform as shown in Fig. 10.
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Fig. 9. uy/L vs. spacing between the fiber

and a boundary ¢/d.
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Fig. 10. Buckling form and mesh for a

fiber touching the free boundary.

Figure 11 shows some results of convergence study for a fiber touching the free
boundary (case 2 with ¢ = 0, Figs. 4, 10). In this Figure, the deviation D(%)
of the critical shortenings uy/L for different meshes with respect to the results
obtained with the highest possible accuracy admitted in this paper (right edges
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Fig. 11. Convergence with respect to number

of elements k,m,n.

of the curves) is given. A compari-
son of cases 1 and 2 shows that ge-
ometry 2 can be used in modeling
case 1 within approximately 5 % ac-
curacy for the critical shortenings.
Free surface effect for case 2 can be
substantial and decrease the value
of the critical shortening by up to
about 40 %.
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