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ABSTRACT. The present paper deals with the numerical simulation of delamination in composite
panels. Within our model interface layers are positioned at layer boundaries where damage is
expected. The material model considering inelastic strains is written in terms of the Green–
Lagrangian strains and work–conjugated 2ndPiola Kirchhoff stress tensor. The delamination
criterion of Hashin is reformulated as a yield criterion with softening. The critical energy re-
lease rate controls the delamination process. Refined hexahedral elements are used to discretize
laminated structures. To avoid mesh dependent solutions a special regularization technique is
applied. Additional viscous strain rates are superposed onto the rate independent model. Pa-
rameter studies show the influence of the different constitutive and numerical quantities. Fur-
thermore we investigate the influence of delamination on the stability of composite plates.

RÉSUMÉ. Ce papier concerne la simulation numérique du délaminage des panneaux composites.
Dans notre modèle les interfaces sont positionnées à priori là ou l’endommagement est attendu.
Le modèle est formulé en déformations de Green Lagrange et contraintes de Piola Kirchoff de
seconde espèce. Le modèle de délamination d’Hashin est reformulé comme un critère de plas-
ticité avec adoucissement. Le taux de restitution critique d’énergie contrôle le processus de
délamination. Des hexahedres sophistiqués sont utilisés pour discrétiser les structures délami-
nées. Une technique spéciale de régularisatioon est appliquée pour éviter la dépendance au
maillage. Pour ce faire on ajoute une contrainte visqueuse. Une analyse paramétrique permet
de comprendre l’influence des paramêtres du modèle. Enfin on étudie l’infleunce de la délami-
nation sur le flambage des plaques composites.
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1. Introduction

Laminated shells are often used in light weighted structures. High strength and
stiffness ratios are the main advantages of these materials. We consider carbon fiber
or glass fiber reinforced polymers. A complicated interaction of the different failure
modes can be observed in experiments. Especially delamination may lead to a sig-
nificant reduction of the carrying load and to a reduction of lifetime under dynamic
loading. Under compressive loads the process is driven by buckling of the sublami-
nate. Usually numerical tools like the finite element method are applied to simulate
the complicated structural behaviour.

Several authors use stress–based criteria to predict different failure modes. The
so–called first–ply failure analysis yields the location where damage starts. Stiff-
ness parameters are reduced or set to zero if the criterion is not fulfilled. Especially
within geometrical nonlinear calculations the equilibrium iterations may become un-
stable. Other authors apply so–called virtual crack–extension or crack–closure meth-
ods. When the energy related to the newly opened crack-surface exceeds a critical
value, the delamination propagates. The energy release rate can be calculated us-
ing the nodal forces and displacements of a finite element solution, see e.g. Wang
et.al.[WAN85]. In some papers interface elements with double nodes are used to
map the geometric discontinuities arising within the delamination process, see e.g.
Schellekens and de Borst [SCH94]. The authors develop plane strain elements and as-
sociated interface elements with cubic interpolation functions. The constitutive equa-
tions for the interface element are formulated using the crack opening displacements.
Crisfield et al. [CRIS97] modified the concept along with eight–node quadrilateral
plane strain elements.

In this paper we present a finite element tool for the prediction of damage in lay-
ered structures. Especially the influence of delaminations on the stability behaviour
of composite panels is investigated. The developed hexahedral shell element is able to
predict the three–dimensional stress state, which typically occurs in composite struc-
tures. Based on mixed variational principles special interpolation techniques are ap-
plied. The transverse shear strains are approximated according to the paper of Dvorkin
and Bathe [BAT84]. For the normal strains in thickness direction we consider the
shape functions of Betsch and Stein [BET95]ANS-method. Both type of interpola-
tions are performed in the middle plane of the element. The membrane behaviour is
essentially improved applying the enhanced strain method (EAS) with five parameters.
Due to the different shape functions the element orientation must be considered when
generating the mesh. Detailed finite element equations of the ANS–EAS5–element
are given in Klinkel, Gruttmann and Wagner[KLI99].

Delamination of layered composites usually occurs together with damage within
the plies. However, the complicated interaction between the different failure modes
is not investigated in the paper. We introduce interface elements with small but not
vanishing thickness. Here, the three–dimensional stress state follows from an inelas-
tic material law. For this purpose the delamination criterion of Hashin is reformulated
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as a yield criterion with softening. The slope of the softening curve is determined
with the critical energy release rate, the thickness of the interface layer and the ten-
sile strength of the laminate in thickness direction. Complete delamination is given if
the newly opened surface is free of stresses. Mesh dependent solutions are avoided
using a viscoplastic regularization. The variational formulation is written in a mate-
rial formulation in terms of the Second Piola–Kirchhoff stress tensor and the work
conjugate Green–Lagrangian strain tensor. The tensor components refer to different
basis systems, where the transformations are specified in Sprenger, Gruttmann and
Wagner[SPR00].

The main aspect of the present paper is the investigation of stability problems with
propagating delamination in contrast to results in [SPR00] where stationary delami-
nations have been considered.

2. Delamination Model

2.1. Interface layer

We position interface layers with thickness ht in those regions where delamination
is expected, see Fig. 1. The thickness is chosen as ht ≈ 10−2 h, where h denotes
the total thickness of the laminate. With these thickness ratios the global structural
behaviour remains practically unaltered.

�
�

Z

Z0

ht
h

Gc

arctan E3

Figure 1. Interface layer and softening function

In order to predict the location where delamination occurs the delamination cri-
terion of Hashin [HAS80] is introduced. The application is restricted to small defor-
mations. Therefore the criterion can be formulated using the Second Piola–Kirchhoff
stress tensor:

(S33)2

Z2
0

+
(S13)2 + (S23)2

R2
0

≤ 1 . [1]

Here, the interlaminar normal stresses S33, the shear stresses S13 and S23, the tensile
strength in thickness direction Z0 and the shear strength of the laminate R0 enter into
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equation (1). The stresses are given with respect to a local orthonormal coordinate
system.

Furthermore, we introduce linear softening behaviour

Z(α) = Z0 (1 − µα) ≥ 0 with µ > 0 , [2]

where the internal variable α denotes the equivalent inelastic strain. The critical en-
ergy release Gc rate corresponds to the area under the softening curve multiplied with
ht

Gc =
Z2

0ht

2
(

1
E3

+
1

Z0µ
) , [3]

where E3 denotes the elastic modulus in thickness direction. In the present model the
energy is dissipated within the interface layer of thickness ht, see Fig. 1.

If the elastic deformations are negligible, which means that the first term in the
sum cancels out, the softening parameter µ can easily be determined from (3) as

µ =
Z0 ht

2 Gc
. [4]

Delamination is defined, when the absolute value of the interlaminar stress vector
vanishes.

2.2. The rate–independent model

The fracture criterion (1) is reformulated and extended by the softening function
(2) as follows

F (S, α) = g(S) − Z(α) [5]

with

g(S) =
√

ST AS , A = Diag

[
0, 0, 1, 0,

(
Z0

R0

)2

,

(
Z0

R0

)2
]

. [6]

The components of S = [S11, S22, S33, S12, S13, S23]T and A refer to a local Carte-
sian coordinate system. For α = 0 eq. (5) is another representation of (1).

For small strains the Green–Lagrange strain tensor E = Eel + Ein is additively
decomposed in an elastic and an inelastic part. The elastic part follows from the
linear constitutive law Eel = C−1 S, where the constitutive tensor C in terms of
the elasticity constants Ei, Gij and νij is described in Sprenger, Gruttmann and
Wagner[SPR00]. The inelastic strain rates and the evolution law for the equivalent
plastic strains are given with the inelastic multiplier λ̇, thus

Ėin = λ̇N , α̇ = λ̇ . [7]
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The gradient of the yield function can be expressed as N = AS/g. Finally the
loading–unloading conditions must hold

λ̇ ≥ 0 , F ≤ 0 , λ̇F = 0 . [8]

In case of loading with λ̇ > 0 the rate equations (7) are approximately integrated in
time using a backward Euler integration algorithm. Within a time step tn+1 = tn+∆t
one obtains, after some algebraic manipulations, the stress tensor and the parameter α

Sn+1 = P Etr , αn+1 = αn + λ , [9]

with P = [C−1 + λ
Z A]−1 and Etr = En+1 − Epl

n . Here, the abbreviations λ :=
∆tλ̇n+1, Sn+1 = S(tn+1) and αn+1 = α(tn+1) are introduced.

Linearization of the stress tensor yields the consistent tangent tensor

D̄ = P − PN ⊗ PN
N · PN + H

, H =
Z ′

1 − λZ′
Z

, [10]

with Z ′ := dZ/dα. If for Z > 0 the softening parameter µ increases certain values,
negative diagonal terms in D̄ occur. In this case the global iteration process to solve
the equilibrium equations becomes unstable. For Z = 0 the expressions for P and H
are undefined. This can be avoided introducing a tolerance.

2.3. Viscoplastic regularization

To prevent the described numerical instabilities, we use a regularization technique.
The viscoplastic strain rates are introduced according to the approach of Duvaut and
Lions [DUV72]

Ėin = Ėvp =
1
η
C−1

(
S − S̄

)
,

α̇ = −1
η

(α − ᾱ) ,
[11]

where η denotes the viscosity parameter. Here, η is a numerical parameter which
has the meaning of a relaxation time. The stresses S̄ and equivalent plastic strains ᾱ
denote the solutions of the rate–independent theory.

Substitution of eq. (11)1 into the additive decomposition the strain rates yields
with the elastic constitutive law

Ṡ +
1
η
S = CĖ +

1
η
S̄ ,

α̇ +
1
η
α =

1
η
ᾱ .

[12]

The homogeneous differential equations can be solved in an exact way. Against it the
inhomogeneous solution is obtained approximately using a backward Euler integration
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procedure. Thus, introducing Sn = S(tn), δ = ∆t/η and β = exp(−δ) we end up
with

Sn+1 = β Sn + (1 − β) S̄n+1 +
1 − β

δ
C∆E ,

αn+1 = β αn + (1 − β) ᾱn+1 .
[13]

The viscoplastic tangent matrix follows immediately with

D =
dS
dE

=
1 − β

δ
C + (1 − β) D̄ . [14]

The first term in (14) leads to positive diagonal entries in the viscoplastic tangent
matrix, where the factor δ implies that with decreasing η the time increment ∆t has
to be reduced, to obtain the desired effect. The symmetric matrix D is necessary to
setup the tangent stiffness matrix for the equilibrium iteration.

3. Examples

3.1. Delamination of a sublayer in a plate strip

The stability behaviour of a plate strip with an assumed fixed delamination zone
has been investigated in Gruttmann and Wagner [GRU94] and Sprenger et al. [SPR00].
In this paper we consider the same example, however with a propagating delamination
zone. The geometrical data and the material properties are shown in Fig. 2.

A

75 7525 25

x

z s

4
F�

delamination

b = 1
[mm]

w

E1 = 137900 N/mm2 G12 = 5860 N/mm2

E2 = 14480 N/mm2 G23 = 5860 N/mm2

ν12 = 0.25 F = 50 N

Figure 2. Delaminated plate strip: geometry and material data

The plate strip consists of 10 layers and the assumed delamination zone lies be-
tween layer 9 and 10 in the range 75 ≤ x ≤ 125 mm, see Fig. 2. The fiber orientation
is described within a symmetric stacking sequence [0◦/90◦/0◦/90◦/0◦]s, where 0◦

refers to the x-direction.

In Fig. 3 the finite element mesh is shown. Due to symmetry only half of the
system is discretized. Different mesh densities are chosen. Here, we introduce with
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n1, n2, n3 the number of elements in length direction in the depicted ranges. The in-
terface layer with thickness ht is arranged between layer 9 and 10 in the interval of
L2. In the range of L3 delamination is not possible. The discretization in y–direction
and z–direction is performed with one and four elements, respectively. The external
load is applied via rigid elements. A finite element mesh with n1 = 12, n2 = 24 and

n
3

n
1

n
2

L =503

L =252

L =251

[mm]

Figure 3. Delaminated plate strip: finite element mesh

n3 = 24 is chosen for the numerical calculations. Two deformed configurations with
buckled sublaminates are plotted in Fig. 4. The length of the delamination zone Ldel

remains constant and is given in the first case with Ldel = L1 = 25mm and in the
second case with Ldel = L1 + L2 = 50mm for half the system, respectively. Thus,
the associated computed load deflection curves represent lower and upper bounds for
the subsequent delamination analysis, see Figs. 5 - 6. The external load is increased
until the delaminated layer buckles. An imperfection is imposed automatically on the
system due to the non-uniform discretization in z–direction. Thus, with increasing
load the plate switches into the secondary solution path without further perturbation.
The structure with the short delamination zone Ldel = 25mm yields the higher car-
rying load. All calculations are done controlling the axial displacement at the sup-
port. In the following we discuss a variation of the parameters µ and ht. Here, we
choose n1 = n2 = n3 = 50 and numerical strength parameters Z0 = 0.42N/mm2,
R0 = 6.0N/mm2. In Fig. 5 the load factor λ versus the transverse displacement w of
point A is depicted. The curves for the propagating delaminations using four different
softening parameters are enveloped by the solutions with fixed delamination lengths,
as mentioned before. The softening parameter µ is inversely proportional to the criti-
cal energy release rate Gc. Thus with increasing µ the delamination zone propagates
faster. Using a parameter µ ≥ 0.75, the delamination develops all over the total range
L2 and the load displacement curve approaches the lower limit curve. The influence
of ht on the global deformation behaviour is for this example practically negligible,
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Figure 4. Delaminated plate strip: deformed meshes with short and long delamina-
tion zone

as can be seen in Fig. 6. Furthermore, it has been shown that a numerical integration
of the residual vectors and stiffness matrices using four integration points is sufficient
for the relative thin interface layers.

Deformed meshes at different load levels are plotted in Fig. 7. Finally, we define
the following parameter

D = 100
Z0 − Z(α)

Z0
[15]

to illustrate the delamination progress. Here, D = 100% describes a total delamina-
tion which means that the absolute value of the interlaminar stress vector is reduced to
zero. The plots show that the newly opened surfaces are completely free of stresses.
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Figure 5. Delaminated plate strip: variation of the softening parameter µ at constant
thickness ht = 0.02mm
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Figure 6. Delaminated plate strip: variation of the thickness ht at constant energy
release rate Gc
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Figure 7. Delaminated plate strip: delamination growth for different load factors λ
and constant µ = 1.5
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3.2. Initial circular delamination in a plate

In the next example we discuss the nonlinear behaviour of a plate under axial
loads. The plate consists of 16 layers with a layer thickness hL = 0.12mm and
stacking sequence [0◦/0◦/ + 45◦/0◦/0◦/ − 45◦/0◦/90◦]S . Again an unsymmetric
delamination is introduced. Here, we choose a circular delamination between layer 14
and 15, see Fig. 8. The plate is simply supported along the edges. The geometrical
data and the material data for an AS/3501 graphite epoxy composite are given as
follows:

E1 = 135000 N/mm2 G12 = 5150 N/mm2

E2 = 8500 N/mm2 G23 = 5150 N/mm2

ν12 = 0.317
Z0 = 51.7 N/mm2 R0 = 91.0 N/mm2

ht = 0.005 mm F = 30 N/mm

[16]

The ±45◦ layers lead to a non-symmetric behaviour of the structure. Thus symmetry
with respect to the x-axis and y–axis is not given. Nevertheless this fact is ignored in
the present analysis to reduce the computational effort.

The stability behaviour of this structure has been investigated by Cochelin et.al.
[COC94] for the case of nongrowing delaminations. In the present paper we study
the influence of propagating delaminations. Thus, we introduce interface elements
between layers 14 and 15 in the fine discretized annular space. In thickness direc-
tion several physical layers are summarized within one element layer. This has to be
considered when performing the numerical integration in thickness direction[KLI99].
The load parameter λ is used to control the nonlinear calculations. For comparisons,
we analyze a ”perfect” plate without delamination and the same plate with an artificial
non–growing delamination zone. In the first case only in-plane loading occur due to
the symmetric layup. With increasing axial deformation a bifurcation point is found
at a load factor λ = 50.3. Based on a classical perturbation with the first eigenvector
a switch to the secondary solution path is possible, see Fig. 10. Due to the eccen-
tric position of the delamination zone an imperfect system is computed in the second
case. One obtains a non-linear load displacement curve which approaches for large
displacements the secondary solution path of the perfect plate. In the following, we
discuss the effects of a propagating delamination zone. Here we investigate the influ-
ence of the softening parameter µ and the size of the time step ∆t. The load deflection
curves in Fig. 9 show the variation of the softening parameter µ, and thus the influ-
ence of Gc for propagating delaminations. A parameter µ = 0.58 corresponds to an
energy release rate Gc = 0.222N/mm, see eq. (4), which is a realistic value. The
largest value of µ = 0.88 corresponds to Gc = 0.147N/mm. Noticeable differences
occur in the range of moderate displacements. This is due to the fact that for finite
deformations global buckling dominates the behaviour. The influence of two different
time steps ∆t is depicted in Fig. 10. Only minor differences can be seen.

Delamination starts at the coordinates (x = 0mm, y = 5mm) and propagates
along the inner circle. With increasing load a second point with coordinates (x =
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Figure 8. Plate with circular delamination: geometry and finite element mesh
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5mm, y = 0mm) becomes critical. Hence, both delamination ranges fuse. The
whole process is depicted in Fig. 11.

0
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1 2
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�

Figure 9. Variation of the softening parameter µ with constant ∆t = 0.1
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Figure 10. Variation of the time step ∆t with constant µ = 0.78
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Figure 11. Growing delamination zone
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4. Conclusions

In this paper a model to simulate increasing delaminations in composite structures
within a finite element approach is presented. Interface elements with small but non–
vanishing thickness are developed using refined hexahedral elements. These elements
are located in regions where delaminations are expected. Within an inelastic model,
the delamination criterion of Hashin is extended to a yield criterion with softening.
A viscoplastic regularization procedure is introduced to avoid numerical instabilities.
The viscosity parameter is determined such that the critical energy release rate is the
essential material parameter. Detailed numerical calculations show the robustness and
reliability of the developed delamination model within a stability analysis.
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