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P. Neittaanmäki, T. Rossi, K. Majava, and O. Pironneau (eds.)
R. Owen and M. Mikkola (assoc. eds.)
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Abstract. A new and efficient formulation for a quadrilateral Mindlin–Reissner plate
element is presented. A Hellinger–Reissner functional with independent displacements, ro-
tations and stress resultants is used in case of a linear isotropic elastic material. Within
the mixed formulation the stress resultants are interpolated using five parameters for the
bending moments and four parameters for the shear forces. The hybrid element stiffness
matrix resulting from the stationary condition can be integrated analytically and thus is
obtained by a one point integration and a stabilization matrix. The element possesses a
correct rank, does not show shear locking and is applicable for the evaluation of displace-
ments and stress resultants within the whole range of thin and thick plates.
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1 INTRODUCTION

In the past, considerable research efforts have been directed towards the development
of efficient and reliable finite plate elements and numerous publications can be found in
the literature see e.g. the textbook [1].

Here we mention among may others the so–called DKT and DKQ elements, where the
Kirchhoff constraints are only fulfilled at discrete points of a thin plate, see e.g. [2]. Most of
the work has been focussed on the Mindlin–Reissner model, e.g. [3,4], which by–passes the
difficulties caused by C1–requirements of the classical Kirchhoff theory, e.g. [1,5]. However
for the standard bilinear interpolation for the transverse displacements and rotations
severe shear locking occur for thin plates. A simple method to avoid this locking behavior
is the application of reduced or selective reduced integration, see e.g. [6,7], which leads then
to a rank deficiency of the element stiffness matrix. Hence several authors have developed
stabilization techniques to regain the correct rank, e.g. [8,9]. These techniques have been
extended and refined for different boundary value problems in [10], where stabilization
matrices on basis of the enhanced strain method have been derived. A further method
uses substitute shear strain fields [11], subsequently extended and reformulated in [12,13]
and [14–16]. For mixed hybrid models the choice of assumed internal stress fields is
particularly crucial, e.g. [17].

The paper is organized as follows. The variational formulation for a linear plate ac-
counting for transverse shear strains is based on a Hellinger–Reissner functional. The
interpolation functions for the displacements, strains and stress resultants are specified
and explicit expressions for the element matrices are derived. The analytical integration
leads to the element stiffness matrix which is obtained by one-point integration and a
stabilization matrix. Several examples demonstrate the efficiency of the developed finite
plate element.

2 BASIC EQUATIONS

2.1 Variational Formulation

For a the description of a plate we introduce the domain Ω, the boundary Γ, the
thickness h, a transverse load p̄ = [p, 0, 0]T in Ω and boundary loads t̄ = [p̄, m̄x, m̄y]

T on
Γσ. The variational formulation is based on a Hellinger–Reissner functional.

ΠHR(u,σ) =
∫

(Ω)

(εT σ − 1

2
σTC−1σ) dA −

∫
(Ω)

uT p̄ dA −
∫

(Γσ)

uT t̄ ds → stat. (1)

Here, the displacement field is u = [w, βx, βy]
T , with the transverse deflection w and the

rotations βx and βy , see Fig. 1. Furthermore, we introduce the vector of stress resultants
σ = [mx,my,mxy, qx, qy]

T with the bending moments mx,my,mxy and the shear forces
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qx, qy. Within a Mindlin–Reissner theory the strains read

ε =




κx

κy

2κxy

γx

γy




=




βx,x

βy,y

βx,y +βy,x

βx + w,x

βy + w,y




. (2)

Furthermore, the constitutive matrix for linear isotropic elasticity is introduced as

C =

[
Cb 0
0 Cs

]
, Cb = D




1 ν 0
ν 1 0

0 0
1 − ν

2


 , Cs = κGh

[
1 0
0 1

]
(3)

with the bending rigidity D = Eh3

12 (1−ν2)
, Young´s modulus E, shear modulus G, Poisson´s

ratio ν and shear correction factor κ = 5
6
. The stationary condition yields

δΠHR(u,σ, δu, δσ) =
∫

(Ω)

[δεT σ + δσT (ε − C−1σ) − δuT p̄] dA −
∫

(Γσ)

δuT t̄ ds = 0 (4)

with virtual displacements and stresses δu = [δw, δβx, δβy]
T , δσ = [δmx, δmy, δmxy, δqx, δqy]

T .

h

A
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B

4
3

2

1

w3 � y3

� x3

midsurface (z=0)p
z �

�

z,w
� x

� y

y

x

z

y

my

qy myx

qx
mx

mxy

x

Figure 1: Quadrilateral plate element

2.2 Finite Element Equations

For a quadrilateral element we exploit the isoparametric concept with coordinates ξ,
η defined in the unit square {ξ, η} ∈ [−1, 1], see Fig. 1, and interpolate the transverse
displacements and rotations as well as the virtual quantities using bilinear functions

w = NTw , βx = NT βx , βy = NT βy . (5)
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Here, w, βx, βy denote the nodal displacements and rotations and N the vector of the
bilinear shape functions with

N = [N1, N2, N3, N4]
T = a0 + ξ a1 + η a2 + ξη h

a0 =
1

4




1
1
1
1


 a1 =

1

4



−1

1
1

−1


 a2 =

1

4



−1
−1

1
1


 h =

1

4




1
−1

1
−1




.

(6)

In order to fulfill the bending patch test, see e.g. Taylor et al. [18], we approximate
the shear strains with independent interpolation functions proposed in [14] as follows

[
γx

γy

]
= J−1

[
γξ

γη

]
where

γξ =
1

2
[(1 − η)γB

ξ + (1 + η)γD
ξ ]

γη =
1

2
[(1 − ξ)γA

η + (1 + ξ)γC
η ]

(7)

with the Jacobian matrix computed with the nodal coordinates x = [x1, x2, x3, x4]
T and

y = [y1, y2, y3, y4]
T

J =


 x,ξ y,ξ

x,η y,η


 =


 xT (a1 + ηh) yT (a1 + ηh)

xT (a2 + ξh) yT (a2 + ξh)




.

(8)

Thus, with eq. (7) the covariant components of the shear strains are transformed to the
cartesian coordinate system. The determinant of J yields

detJ = j0 + ξ j1 + η j2 with

j0 = (xTa1)(y
Ta2) − (xTa2)(y

Ta1)

j1 = (xTa1)(y
Th) − (yTa1)(x

Th)

j2 = (yTa2)(x
Th) − (xTa2)(y

Th) .

(9)

The strains at the midside nodes A,B,C,D, see Fig. 1, are specified as follows

γM
ξ = [x,ξ βx + y,ξ βy + w,ξ ]M M = B,D

γL
η = [x,η βx + y,η βy + w,η ]L L = A,C (10)

where the following quantities are given with the bilinear interpolation (5)

βA
α = 1

2
(βα4 + βα1) , α = x, y wA,η = 1

2
(w4 − w1)

βB
α = 1

2
(βα1 + βα2) wB,ξ = 1

2
(w2 − w1)

βC
α = 1

2
(βα2 + βα3) wC,η = 1

2
(w3 − w2)

βD
α = 1

2
(βα3 + βα4) wD,ξ = 1

2
(w3 − w4)

rA,η = 1
2
(r4 − r1) , r =

[
x
y

]
rC,η = 1

2
(r3 − r2)

rB,ξ = 1
2
(r2 − r1) rD,ξ = 1

2
(r3 − r4)

(11)
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Considering (2) and (5) - (11) the approximation of the strains is now obtained by

εh = Bv , B = [B1,B2,B3,B4] , v = [v1,v2,v3,v4]
T , (12)

where vI = [wI , βxI , βyI ]
T and the submatrices for bending and shear are

BI =


 Bb

I

Bs
I


 , Bb

I =




0 NI ,x 0

0 0 NI ,y

0 NI ,y NI ,x


 , Bs

I = J−1


 NI ,ξ b11

I NI ,ξ b12
I NI ,ξ

NI ,η b21
I NI ,η b22

I NI ,η


 (13)

with
b11
I = ξI xM,ξ b12

I = ξI yM,ξ

b21
I = ηI xL,η b22

I = ηI yL,η .
(14)

The coordinates of the unit square are ξI ∈ {−1, 1, 1,−1}, ηI ∈ {−1,−1, 1, 1} and the
allocation of the midside nodes to the corner nodes is given by (I,M,L) ∈ {(1, B,A);
(2, B, C); (3, D,C); (4, D,A)} .

The stress field σ is interpolated as follows

σh = Sβ S = [1(5×5), S̃] β =
[
β0,β1

]T

S̃ =




J0
11J

0
11(η − η̄) J0

21J
0
21(ξ − ξ̄) 0 0

J0
12J

0
12(η − η̄) J0

22J
0
22(ξ − ξ̄) 0 0

J0
11J

0
12(η − η̄) J0

21J
0
22(ξ − ξ̄) 0 0

0 0 J0
11(η − η̄) J0

21(ξ − ξ̄)
0 0 J0

12(η − η̄) J0
22(ξ − ξ̄)




,

(15)

where the vectors β0 and β1 contain 5 and 4 parameters, respectively. The transformation
coefficients J0

αβ in (15) denote the components of the Jacobian matrix (8) evaluated at
the element center (ξ = 0, η = 0) and transform the contravariant components of the
stress resultant tensors to the cartesian basis system. The coefficients have to be constant
in order to fulfill the patch test. The constants ξ̄ and η̄ which are introduced to obtain
decoupled matrices denote the coordinates of the center of gravity of the element

ξ̄ =
1

Ae

∫
(Ωe)

ξ dA =
1

3

j1

j0

η̄ =
1

Ae

∫
(Ωe)

η dA =
1

3

j2

j0

. (16)

The element area is given by Ae = 4j0.
Inserting (12) and (15) and the corresponding equations for the virtual stresses and

virtual strains into the stationary condition (4) yields

δΠh
HR =

numel∑
e=1

[
δβ
δv

]T

e

{[ −H G
GT 0

] [
β
v

]
−

[
0
f

]}
e

= 0 , (17)
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where numel denotes the total number of plate elements to discretize the problem and the
virtual element vectors δβ and δv, respectively. The element load vector f = [f1, f2, f3, f4]

T

which follows from the external virtual work is identical with a pure displacement formu-
lation. For a constant load p one obtains fI = [fw

I , 0, 0]T with

fw
I = Ae p (a0I +

1

3

j1

j0

a1I +
1

3

j2

j0

a2I) , (18)

where a0I , a1I , a2I are the components of the vectors defined in (6).
Furthermore the matrices H and G are introduced

H :=
∫

(Ωe)

STC−1S dA , G :=
∫

(Ωe)

STB dA . (19)

Since all integrants in (19) involve only polynomials of the coordinates ξ and η the inte-
gration for the element matrices can be carried out analytically. The components of the
matrix H are given by

H =


 Ae C−1 0

0 h


 with h =


 hb 0

0 hs




(4×4)

(20)

and

hb
11 =

4Aef11

Eh3
(J02

11 + J02
12 )2 hb

22 =
4Aef22

Eh3
(J02

21 + J02
22 )2

hb
12 = hb

21 =
4Aef12

Eh3

[
(J0

11 J0
21 + J0

22J
0
12)

2 − ν (J0
11 J0

22 − J0
12J

0
21)

2
]

hs
11 =

Aef11

3κGh
(J02

11 + J02
12 ) hs

22 =
Aef22

3κGh
(J02

21 + J02
22 )

hs
12 = hs

21 =
Aef12

3κGh
(J0

11 J0
21 + J0

22J
0
12)

f11 = 1 − 1

3

(
j2

j0

)2

f22 = 1 − 1

3

(
j1

j0

)2

f12 = −1

3

j1

j0

j2

j0

.

(21)

Furthermore the matrix G is obtained by analytical integration as follows

G = [G1,G2,G3,G4] GI =


 Ae B0

I

gI


 gI =

1

3
AeγI




0 J0
11 J0

12

0 J0
21 J0

22

1 γ11
I γ12

I

1 γ21
I γ22

I


 (22)

6
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with B0
I = BI(ξ = 0, η = 0) and

γI = hI − j2

j0

a1I − j1

j0

a2I

γ11
I = (b11

I hI − b11
I

j2

j0

a1I − b21
I

j1

j0

a2I)/γI

γ12
I = (b12

I hI − b12
I

j2

j0

a1I − b22
I

j1

j0

a2I)/γI

γ21
I = (b21

I hI − b11
I

j2

j0

a1I − b21
I

j1

j0

a2I)/γI

γ22
I = (b22

I hI − b12
I

j2

j0

a1I − b22
I

j1

j0

a2I)/γI .

(23)

The parameters hI , a1I , a2I are the components of the nodal vectors defined in (6), whereas
the bαβ

I are defined in (14). Since the interpolation of the stress resultants are discontin-
uous at the element boundaries, the stress parameters are eliminated on element level

β = H−1Gv . (24)

Thus considering (20) and (22) one obtains the element stiffness matrix

ke = GTH−1G = k0 + kstab

kIK = AeB
0T
I CB0

K + gT
I h−1gK .

(25)

Here, k0 denotes the stiffness of a one–point integrated Mindlin–Reissner plate element
with substitute shear strains and kstab the stabilization matrix. The matrix h according
to (20) consists of two submatrices of order two and thus can easily be inverted. The
element possesses with three zero eigenvalues the correct rank.

3 EXAMPLES

The derived element formulation has been implemented in an extended version of the
general purpose finite element program FEAP, see Zienkiewicz and Taylor [1].

3.1 Constant bending patch test

First we investigate the element behaviour within a constant bending patch test as
is depicted in Fig. 2. A rectangular plate of length a and width b supported at three
corners is loaded by a concentrated load at the fourth corner and by bending moments
at the corners. The geometrical and material data and the loading parameters are given.
The solution of the problem can be computed analytically. The vertical displacement of
node 1 is w1 = 12.48 and the bending moments mx = my = mxy = 1.0 are constant
throughout the plate.

The present element fulfills the patch test as Fig. 3 shows.

7
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y x

1

2

3

4

5

6

7

8

a

b

Node Fz m̄x m̄y

1 -2 20 -10
2 0 20 10
3 0 -20 10
4 0 -20 -10

a = 40 E = 106

b = 20 ν = 0.3
h = 0.1

Figure 2: Rectangular plate, patch of 5 elements

9.999E-01 min

1.000E+001.000E+00 max

-1.248E+01 min

-1.153E+01

-1.058E+01

-9.636E+00

-8.688E+00

-7.739E+00

-6.791E+00

-5.843E+00

-4.895E+00

-3.946E+00

-2.998E+00

-2.050E+00

-1.102E+00

-1.533E-01

7.950E-01 max

Figure 3: Bending moment mx and displacement w for the present element

3.2 Clamped square plate subjected to a concentrated load

The problem with geometrical and material data is defined in Fig. 4. The mesh consists
of 2×2 elements over a quarter of the plate, where fourfold symmetry has been used. Here
the influence of element distorsion is tested, where one inner node is moved by 0 < s < 10
in x- and y-direction. An analytical Kirchhoff solution for the center deflection yields
w = 0.0056 Fa2/D = 1, see e.g. [5]. The sensitivity of different element formulations
with respect to the distorsion parameter s is depicted in Fig. 5. The DKQ–element [2]
behaves relatively insensitive with respect to the mesh distorsion and yields for the present
coarse mesh a solution which is too weak. The results computed with the new element
are slightly better than with the Bathe/Dvorkin element [15]. The clamped plate allows
a calculation without stabilization matrix, since the hourglass modes are suppressed by
the boundary conditions. Thus for the present example the best results are obtained with
an one point integrated element U1. However this is not the case for arbitrary boundary
conditions. Results for the Belytschko/Tsay [8] element are similar to the element U1 in
the recommended range for the stabilization parameter 0.02 ≤ rw ≤ 0.05. A contour plot
of w with a distorsion parameter s = 10 is given in Fig. 5 for the present element.
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a = 100
h = 1
F = 16.3527
E = 10000
ν = 0.3

s

s

F, w

a /2

a
/2

x

y

Figure 4: Clamped square plate subjected to a concentrated load
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w
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U_1

B/D 

0.000E+00 min

5.562E-02

1.112E-01

1.669E-01

2.225E-01

2.781E-01

3.337E-01

3.894E-01

4.450E-01

5.006E-01

5.562E-01

6.118E-01

6.675E-01

7.231E-01

7.787E-01 max

Figure 5: Influence of mesh–distorsion on center deflection and displacements for a mesh distorsion s=10

3.3 Corner supported square plate subjected to uniform load

A corner supported plate with edge length 2a subjected to uniform load is discussed.
Considering symmetry the mesh consists of 8 × 8 elements for a quarter of the plate,
see Fig. 6. The geometrical and material data are also given. An approximate ansatz
according to [20] reads

w(x, y) = c1 + c2x
2 + c3y

2 + c4x
4 + c5x

2y2 + c6y
4 , (26)

where the origin of the co-ordinate system lies in the center of the plate. The boundary
condition of vanishing bending moments at the edges can only be fulfilled in an integral
sense. The other boundary conditions and the partial differential equation can be fulfilled
exactly. The constants are determined and thus for y = 0 the approximate Kirchhoff
solution reads

w(x, y = 0) =
qa4

2Eh3
[11 − 6ν − ν2 + (−5 + 4ν + ν2)(

x

a
)2 + (1 +

ν

2
− ν2

2
)(

x

a
)4] . (27)

The deflections w(x, y = 0) obtained with different elements are plotted in Fig. 7. The
Belytschko/Tsay element [8] leads to hourglass modes for parameters rw < 0.02, optimal

9
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a = 12
h = 0.375
q = 0.03125
E = 430000
ν = 0.38

a a

y x

Figure 6: Corner supported plate

results for 0.02 ≤ rw ≤ 0.05 and locking for rw > 0.05, see also [8]. The parameter
rβ = 0.02 has been chosen constant in all cases. Furthermore the deformed mesh using
the present element amplified by a factor 10 is depicted in Fig. 7. It can be seen that no
hourglassing effects occur.

0,00

0,02

0,04

0,06
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0,10

0,12

0,14

0,00 2,00 4,00 6,00 8,00 10,00 12,00

coordinate  x

d
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p
la

ce
m

en
t 

 w

B/T r_w = 0.02

B/T r_w = 0.001

B/T r_w = 10

Present

Analytical (approx.)

Figure 7: Deflection w(x, y = 0) , comparison of different elements and deformed mesh

For a convergence study of the center displacement the shear correction factor is
increased for the present element and the Bathe/Dvorkin element to approximate the
Kirchhoff solution. The results according to Table 1 show nearly the same convergence
behaviour for all three compared elements against the same value, which differs from the
approximate analytical solution.

8*8 16*16 24*24 48*48 96*96 192*192

DKQ 0.11914 0.11960 0.11969 0.11974 0.11975 0.11976
B/D (κ = 1000) 0.11856 0.11946 0.11963 0.11973 0.11975 0.11976
Present (κ = 1000) 0.11862 0.11947 0.11963 0.11973 0.11975 0.11976
analytical (approx.) 0.12253

Table 1: Corner supported plate, convergence study
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3.4 Concrete plate structure subjected to uniform load

A typical concrete plate structure of a building subjected to uniform load is presented
in the final example, see Fig. 8. The plate of constant thickness h = 0.25 m is loaded with
q = −10 kN/m2 and simply supported at the walls. A linear elastic material behaviour
with E = 3 · 107 kN/m2 and ν = 0.2 is chosen. The plate is discretized with 3628
elements and 3790 nodes. The associated displacements w in cm are depicted in Fig.
8, where the minimum occurs around the hole. Similar results are obtained with the
DKQ–element, [2]. Here, a comparison of CPU-time shows that in our implementation
the DKQ-element needs about 52% more time than the present element for calculating
the global stiffness matrix.

8.5

1.5

2.0

2.5

r=
4

7.0

4.0

4.0

6.0

4.5

[m]

7.6

6.9

6.9 3.
9

7.5 6.0 5.0 7.0 4.0

3.0

4.0
9.0

-4.044 min

-3.721

-3.398

-3.075

-2.752

-2.429

-2.106

-1.783

-1.460

-1.137

-0.814

-0.491

-0.168

0.155

0.478 max

Figure 8: Concrete plate structure: system and displacement w in [cm]

4 CONCLUSIONS

The formulation of a quadrilateral plate element with three displacement degrees of
freedom (transverse deflection, two rotations) at each node has been presented. The
element possesses a correct rank, does not show shear locking and is applicable for the
evaluation of displacements and stress resultants within the whole range of thin and thick
plates. No parameters have to be adjusted to avoid shear locking or to prevent zero energy
modes. The computed results are very satisfactory. The convergence behaviour for the
displacements and stresses is slightly better than comparable quadrilateral assumed strain
elements. However the essential advantage is the fast stiffness computation due to the
analytically derived stiffness.
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