Computations of non-linear dynamics of shells using Energy-Momentum methods

Diplomarbeit von Abdisitar A. Abdi

Introduction

Most of the well known implicit algorithms developed for linear dynamics, do not conserve energy and angular momentum in non-linear cases. These algorithms become unstable in long-time simulations of non-linear dynamics. The Energy-Momentum methods provide suitable algorithms that conserve in each time step momentum and total energy in Hamiltonian systems.

- conservation of energy

 \[[\psi_{in} + \psi_{ext} + K]_{n+1} = [\psi_{in} + \psi_{ext} + K]_n \]

 \(\psi_{n+1} \) and \(\psi_n \) are the potential energies at the end and the beginning of the time step. \(K_{n+1} \) and \(K_n \) are the corresponding kinetic energies.

 \[\psi_{in} = \psi_{in}(C) \]

 \[C = F^T F. \]

 \[\psi_{ex} = -\int_B P \cdot x. \]

 \[K = \int_B \frac{1}{2} \dot{x} \cdot \dot{x} dv. \]

- Conservation of linear momentum in the absence of external forces

 \[L_{n+1} = L_n \]

 \(L_{n+1} \) and \(L_n \) are the linear momenta at the end and the beginning of the time step.

 \[L = \int_B \rho \dot{x} dv \]

- conservation of angular momentum in the absence of external

 \[J_{n+1} = J_n \]

 \(J_{n+1} \) and \(J_n \) are the angular momenta at the end and the beginning of the time step.

 \[J = \int_B (x - X^0) \times \rho \dot{x} dv \]

Example 1 Tumbling of a plate

A free motion of the plate is simulated using 4 noded elements and a 6 x 6 mesh. The load increases linearly to a maximum and vanishes. The time integration algorithm conserves linear and angular momentum as well as the total energy.

Example 2 Snap-through of a cylindrical shell

A \(\frac{1}{4} \) of the shell is discretized using 4-noded elements and a 4 x 4 mesh. The load increases linearly to a maximum value and remains constant. The diagrams depict snap-through phenomenon simulated using the Energy-Momentum algorithm.