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Abstract

A finite element formulation for a transition element between shells and beam structures is

described in this paper. The elements should allow changes between models in an ’optimal’

way without or with little disturbances which decrease rapidly due to the principle of Saint–

Venant. Thus, the constraints are formulated in such a way that a transverse contraction

within the coupling range is possible. The implementation of the coupling conditions is done

with the Penalty Method or the Augmented Lagrange Method. The element formulation

is derived for finite rotations. Same rotational formulations are used in beam and shell

elements. Rotational increments up to an angle of 2π are possible without singularities based

on a multiplicative update procedure. It can be shown that the transition to rigid bodies

can be derived with some modifications. Examples prove the reliability of the transition

formulation. Here simple element tests and practical applications are shown.
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1 Introduction

The process of detailed modeling of thin–walled beam structures may lead to large systems

and a complex numerical analysis. Even with modern computational equipment this task

should be managed with problem oriented techniques. Parts of thin 3D–structures where

only global behaviour is of interest can be discretized with beam elements whereas regions

where for example local stability phenomena occur can be modeled with shell elements. Thus,

transition elements have to be developed, which should combine both types of elements in a

proper way. In general these elements are available in most of the commercial finite element

codes. But simple examples show that they may lead to severe disturbances of the local

stress state. This is especially important when considering material nonlinear behaviour.

2 Formulation of constraint equations

The aim of this paper is to develop finite elements which describe the transition between

shells and 3D–beams in such a way that the constraints imposed on both formulations are

minimal. The description should hold for any case of geometrical nonlinearities. Therefore

the elements have to be able to describe finite rotations. As basic kinematic assumption for

the element we assume

• an undeformable plane cross section in accordance with the beam theory. No warping

effects are allowed (this may be defined for the beam element by default whereas it has

to be enforced for the shell element as constraint).

• All nodes of the shell discretization which have to be coupled as well as the beam node

are situated in this plane, see Fig. 1.

• All nodes in the cross section can move on a straight line through the center of gravity.

( In a beam theory with elastic material behaviour we assume σy = σz ≈ 0, which

leads to εx =
σx

E
, εy = −νεx, εz = −νεx. Thus, an arbitrary point of the cross section

can move only on a straight line through the center of gravity.)
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Transition element

Beam elements

Shell elements

Fig. 1: Example: Cross section of an U-shaped beam with shell and beam discretization

Points on the cross section can be described by a convective coordinate system ξ2, ξ3 with

base vectors A2,A3 in the undeformed and a2, a3 in the deformed configuration, see Fig. 2.

Here the orthonormal base systems

Ai = R0 ei = (Ai ⊗ ei) ei

ai = R ei = (ai ⊗ ei) ei = ∆RR0 ei

(1)

are introduced. Beam elements based on Bernoulli theory or Timoshenko theory can be

used.

In the undeformed configuration an arbitrary point I of the cross section is defined by

XI = X0 + ξ2A2 + ξ3A3 (2)
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Reference configuration

Current configuration
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Fig. 2: Reference and current configuration of the cross section at transition

The coordinates of this point I (0, ξ2, ξ3) on the cross section can be calculated using the

base vectors Ai

ξ2 = (XI − X0) · A2, ξ3 = (XI − X0) · A3 . (3)

An arbitrary point I of the cross section in the current configuration is found if

xI = x0 + c2a2 + c3a3 c2, c3 ∈ R (4)

holds.

Due to the fact that points move on a straight line through the center of gravity (S) during

the deformation the position of this point can be described using a parameter λ

xI = x0 + λ (ξ2a2 + ξ3a3) λ ∈ R. (5)

Here, λ can be defined from the distance between S and I in the undeformed and current

configuration.

λ =
‖xI − x0‖
‖XI − X0‖ . (6)
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Thus, the following constraint equation holds for each point of the shell cross section

f = xI − x0 − λ (ξ2a2 + ξ3a3) = 0 (7)

Based on the above defined assumptions warping cannot be decribed. This may be crucial

in some situations.

3 Finite element formulation

Based on the above described kinematical assumptions the element is developed. The beam

node in the transition cross–section is called ’reference node’. Furthermore, the base vectors

A2 and A3 define the orientation of the cross section. It is assumed that the shell nodes to

couple (’coupling nodes’) lie in this plane. The vectors A2 and A3 are used to specify the

section coordinates, see eq. (3). In the current configuration the base vectors a2 und a3 of

the beam element together with the convective coordinates (0, ξ2, ξ3) and the parameter λ

define the coupling nodes.

The mechanical model of the cross section can be considered as a sum of rigid beams which

allow only for axial deflections. The boundary conditions are clamped at the reference node

and jointed at the coupling node, see Fig. 3.

clamped bounded

rigid beam, axial free

hinged bounded

Transition elements

Fig. 3: Transition elements in a beam cross–section

The implementation of the constraint equation (7) in a transition element is done via the

Penalty and the Augmented Lagrange Method. Furthermore a consistent linearization is

derived for the element with respect to finite rotations. The transition is formulated between
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an arbitrary shell node and the associated beam node as a two node element. Thus Fig. 3

may be interpreted as the system of all necessary transition elements for the shown case.

The unknown values at both nodes of the element are introduced in the following vector

v(e) =




uI

ωI

u0

ω0




(e)

, (8)

where u are the displacements and ω are the rotational quantities. The index ’0’ refers to

the beam node whereas the index ’I’ is used for the coupled shell node.

The equations of the penalty method, see e.g. [1, 2], are summarized in the following:

ΠP = Π(u) + Π̃ = Π(u) +
1

2
α fT f , α ∈ R ,

δΠP = δΠ(u) + δΠ̃ = δΠ(u) + α δfT f ,

∆δΠP = ∆δΠ(u) + ∆δΠ̃ = ∆δΠ(u) + α δfT ∆f + α∆δfT f .

(9)

A more stable method is introduced by the Augmented Lagrange Method, see e.g. [5, 7, 8],

with the following equations.

ΠA = Π(u) + Π̃ = Π(u) +
1

2
α fT f + ΛT f ,

δΠA = δΠ(u) + δΠ̃ = δΠ(u) + δfT (α f + Λ) ,

∆δΠA = ∆δΠ(u) + ∆δΠ̃ = ∆δΠ(u) + α δfT ∆f + ∆δf (α f + Λ) .

(10)

Here, α is the Penalty parameter which has to be chosen and Λ are the Lagrangian multi-

pliers. These are held constant within an iteration step. The update reads

Λi+1 = α fi + Λi with Λ0 = 0 . (11)

To derive the necessary equations for both methods simultaneously we introduce the vector

Λ̃ with

Λ̃ = α f (Penalty) , Λ̃ = α f + Λ (Augmented Lagrange) . (12)
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To determine the residual and the stiffness matrix we need to specify the variation and

linearization of the constraints. If we denote the position vector from the reference node to

the coupling node with respect to the basis ai with

rI = ξ2a2 + ξ3a3 , (13)

it holds for

f = xI − x0 − λrI (14)

and its variation

δf = δuI − δu0 − δλ rI − λ δrI . (15)

Here δλ and δrI have to be derived. We introduce the distance R of the nodes in the reference

state

R = ‖XI − X0‖ . (16)

In the current configuration the distance of these nodes is defined by

‖xI − x0‖ =
√

(xI − x0) · (xI − x0) . (17)

Starting from eq. (6) and using the chain rule and product rule it holds for δλ

δλ =
1

R

(δuI − δu0) · (xI − x0) + (xI − x0) · (δuI − δu0)

2
√

(xI − x0) · (xI − x0)

δλ =
1

R

xI − x0

‖xI − x0‖ · (δuI − δu0) .

(18)

With the abbreviations

n =
xI − x0

‖xI − x0‖ and n̂ =
1

R
n (19)

δλ can be written finally as

δλ = n̂ · (δuI − δu0) . (20)

The second term to be derived is the variation δrI . With

δrI = ξ2δa2 + ξ3δa3 (21)
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and

δai = δω0 × ai (22)

δrI can be stated as

δrI = ξ2δω0 × a2 + ξ3δω0 × a3 . (23)

Thus, δrI is defined in terms of rI and δω0

δrI = δω0 × rI = W δω0 (24)

with

W = −skew rI =




0 r3I −r2I

−r3I 0 r1I

r2I −r1I 0


 . (25)

The axial vector ω0 contains the rotational degrees of freedom of the reference node.

Finally the variation of the constraint can be written as

δf = δuI − δu0 − [n̂ · (δuI − δu0)]rI − λW δω0

= (1 − rI ⊗ n̂)(δuI − δu0) − λW δω0

= A(δuI − δu0) − λW δω0 ,

(26)

with

A = 1 − rI ⊗ n̂ (27)

Thus, the residual for a single transition element is defined by

δΠ̃(e) = δvT (e)G(e) = δvT (e)BT
f Λ̃

=
[
δuT

I , δωT
I , δuT

0 , δω0
T
](e)




AT

0

−AT

−λWT



Λ̃ .

(28)

8



The necessary terms in eqs. (93, 103) are derived in a similar way and the tangent stiffness

matrix follows from

k
(e)
T = BT

f α Bf +




P̄ 0 −P̄ −FT

0 0 0 0

−P̄ 0 P̄ FT

−F 0 F H




(29)

with

P̄ = −(Λ̃ · rI)P̂

P̂ =
1

R

1

‖xI − x0‖ [1 − (n ⊗ n)]

F = (rI × Λ̃) ⊗ n̂

H = −λ [
1

2
(rI ⊗ Λ̃ + Λ̃ ⊗ rI) − (Λ̃ · rI)1]

(30)

4 Rigid body transition element

In the following we discuss the application of the above derived equations on the transition

between rigid and flexible parts of structures. The deformation of a rigid body is described by

the translation and the rotation of a reference point ’0’. Any other points on the rigid body

can be described by a convective coordinate system ξ1, ξ2, ξ3 with base vectors A1,A2,A3 in

the undeformed and a1, a2, a3 in the deformed configuration, see eqs. [2] and [3]. Furthermore

the same orthonormal base systems Ai and ai (eq. [1]) are used. These other points may

be points were a transition to flexible parts (for example a shell) of the structure occur. It

holds for the current configuration, see eqs. [5, 13]

xI = x0 + (ξ1a1 + ξ2a2 + ξ3a3) = x0 + rI (31)

and the constraint is defined by, see eq. [7]

f = xI − x0 − (ξ1a1 + ξ2a2 + ξ3a3) = (XI + uI) − (X0 + u0) − rI = 0. (32)

Thus, the equations derived in sections 2 and 3 can be used with λ = 1.
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With δrI = δω0 × rI = W δω0, see eqs. [24, 25], the variation of the constraint yields

δf = δuI − δu0 − δrI = δuI − δu0 − W δω0 . (33)

Finally the residual for a single transition element is

G(e) = BT
f Λ̃ =




1

0

−1

−WT



Λ̃ . (34)

The mechanical model of the transition between rigid and flexible parts is now interpretable

as a sum of pure rigid beam elements with clamped boundary conditions at the reference

node and jointed boundary conditions at the coupling nodes, see Fig. 4.

Fig. 4: Transition between rigid and flexible parts of a structure

Next we derive the necessary linearization for the transition element. Similar to δf the

linearization ∆f can be written as

∆f = Bf ∆v(e) = [1 0 −1 −W]




∆uI

∆ωI

∆u0

∆ω0




. (35)

Furthermore the term ∆δf has to be derived:

∆δf = −∆δrI = − (ξ1 ∆δa1 + ξ2 ∆δa2 + ξ3 ∆δa3) (36)
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with

∆δai = δω0 × ∆ai = δω0 × (∆ω0 × ai)

= (δω0 · ai) ∆ω0 − (δω0 · ∆ω0) ai

= (δω0 ⊗ ∆ω0) ai − (δω0 · ∆ω0) ai ,

(37)

which finally leads to

∆δf = −[ (δω0 ⊗ ∆ω0) − (δω0 · ∆ω0)1 ] rI . (38)

Thus, the term ∆δfT (α f + Λ) for the linearization is given by

∆δfT (α f + Λ) = − (α f + Λ)T [ (δω0 ⊗ ∆ω0) − (δω0 · ∆ω0)1] rI

= − (α f + Λ)T [ (∆ω0 · rI) δω0 − (δω0 · ∆ω0) rI ]

= δω0
T

(
− (α f + Λ) rT

I + (α f + Λ)T rI 1
)

∆ω0

= δω0
T αH∆ω0

(39)

and we end up with the associated tangent stiffness matrix on element level

k
(e)
T = α




1 0 −1 −W

0 0 0 0

−1 0 1 W

−WT 0 WT WTW + H




. (40)

with

H = (f + 1
α
Λ)T rI 1 − (f + 1

α
Λ) rT

I

≈ (f + 1
α
Λ)T rI 1 − 1

2

(
(f + 1

α
Λ) rT

I + rI (f + 1
α
Λ)T

)
.

(41)

Now all equations for the implementation in a finite element code are derived.

5 Examples

The developed finite element formulations for both transition elements have been imple-

mented in an enhanced version of the program FEAP, documented in a basic version in

[10].
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5.1 Clamped thin–walled H-beam

The first example demonstrates the effect of a rigid and soft transition element for the case of

a clamped thin–walled H-beam under axial load. The first part of the beam is modeled with

beam elements [9, 3], the second part is discretized using shell elements [4]. Geometry and

material data are shown in Fig. 5. In Fig. 6 the transverse normal stresses are plotted for

the shell region. It can be seen clearly that in the rigid case stresses occur due to obstruction

of the transverse deformations. The magnitude of these stresses σ22 amounts to more than

20 % of the longitudinal stress σ11, see Fig. 7.

F = 2000 kN

A = 80 cm2

E = 21000 kN/cm2

ν = 0.3

� ��

� ��

��

��

	 
��

200 cm

200 cm

Fig. 5: Clamped beam under axial load

Sigma_22

-2.679E-01 min

1.392E-01

5.463E-01

9.535E-01

1.361E+00

1.768E+00

2.175E+00

2.582E+00

2.989E+00

3.396E+00

3.803E+00

4.211E+00

4.618E+00

5.025E+00

5.432E+00 max

Fig. 6: Transverse normal stresses for soft and rigid transition element
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Fig. 7: Distribution of stresses along a line (coordinate x) through the center of gravity

The distribution of normal and transverse stresses along a line through the center of gravity

is depicted in Fig. 7. It can be seen clearly that there is no disturbance of the stress state

if the soft transition elements are used.

5.2 Steel frame structure

The second example demonstrates coupling of beam and shell elements for a steel frame

structure with welded cross sections, see Fig. 8. The different cross sections are depicted

in Fig. 9. The frame is fixed in z–direction at x=(-6,-3,0,3,6 m), y=4 m. Elastic material

behaviour is assumed using the parameter E = 21000 kN/cm2 and ν = 0.3.

Fig. 8: Frame structure: system and loading
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frame leg

A = 116.8 cm2

Iy = 37789 cm4

Iz = 1350 cm4

IT = 78.9 cm4

��
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horizontal member

A = 80.0 cm2

Iy = 23472 cm4

Iz = 1602 cm4

IT = 29.9 cm4

Fig. 9: Definition of cross sections

The dimensions of the haunch are shown in Fig. 10. It is assumed that leg and member are

coupled with rigid welding seams.

102

80

48

40

Fig. 10: Definition of haunch, values in cm

For comparison we model the structure in 3 different ways, see Fig. 11. The position of the

transitions are defined in regions where the beam theory holds and no disturbances of the

stress state may occur. Here the transitions are at x=4.14 m in the member and at y=2.60 m

in the leg.

Results of the nonlinear analysis for the vertical deflection at x=0 are depicted in Table 1

for the different discretization models. Deviations are calculated under the assumption that

the pure shell solution leads to the best results. Only slightly differences occur between the

different models. Due to the simplifications in the pure beam model (haunch) no comments

can be given on the fact that the pure beam model is slightly more accurate then the mixed

model.

14



Table 1: Vertical displacements at center of horizontal member

Model displacement deviation

beam 1.8634 cm -2.06 %

beam–shell 1.8580 cm -2.34 %

shell 1.9025 cm –

Beam model

Here, 20 beam elements are used. Within

the haunch 5 elements with constant cross

sections are used.

Beam–shell model

For the shell part we use 720 shell elements

whereas the beam part is modeled with 28

beam elements. At each transition 16 tran-

sition elements are used.

Shell model

The whole system is modeled with 1744 shell

elements.

Fig. 11: FE–meshes of different models

In Figs. 12 and 13 the longitudinal stresses are depicted for the beam–shell and the pure

shell model. Again nearly no differences can be seen between the different discretization

strategies. The maximum differences in the stresses σ11 are about 4% in the transition
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zone. Thus, the derived transition elements can be used efficiently in coupling these types

of elements without nearly any disturbances of stress and deformation state.

5.3 Clamped beam under end moment

In the third example we dicuss the modeling of a clamped beam under end moments using

volume elements, e.g. [6]. Here, the question arises how to model the application of the end

moment. A simple method is to model the beam tip with rigid transition elements. System

and loading are shown in Fig. 14 whereas different deformed meshes and the material

parameter are depicted in Fig. 15. No difficulies arise and the problem can be calculated

using 5 incremental steps until a moment of M = 2π EI/	 which leads to a complete circle

of the deformed mesh. Thus the transition elements describe the application of the moment
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on the volume elements correctly.

Sigma_11 [kN/cm^2]

-1.179E+01 min

-1.050E+01

-9.142E+00

-7.783E+00

-6.425E+00

-5.067E+00

-3.708E+00

-2.350E+00

-9.917E-01

3.667E-01

1.725E+00

3.083E+00

4.442E+00

5.800E+00

8.113E+00 max

Fig. 12: Normal stresses, beam–shell model

Sigma_11

-1.132E+01 min

-1.050E+01

-9.142E+00

-7.783E+00

-6.425E+00

-5.067E+00

-3.708E+00

-2.350E+00

-9.917E-01

3.667E-01

1.725E+00

3.083E+00

4.442E+00

5.800E+00

8.114E+00 max

Fig. 13: Normal stresses, shell model

�

M
A

A

Fig. 14: Clamped beam under end moment
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	 = 10

b = 1

h = 0.1

E = 1800

ν = 0

Fig. 15: Deformed meshes for clamped beam under end moment

6 Conclusions

A finite element formulation for a transition element between shells and beam structures has

been described. The coupling condition is formulated such that transverse contraction within

the transition range is possible. The element allows changes between models in an ’optimal’

way without or with very little disturbances. The constraints are considered using either

the Penalty Method or the Augmented Lagrange Method. A slightly modification leads to a

formulation for the transition between rigid and flexible parts of structures. Examples show

the efficiency and practical applicability of the derived transition elements.
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