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A Geometrical Nonlinear Eccentric 3D–Beam

Element with Arbitrary Cross–Sections

F. Gruttmann, R. Sauer and W. Wagner

Institut für Baustatik, Universität Karlsruhe (TH), Kaiserstraße 12,
D–76131 Karlsruhe, Germany

In this paper a finite element formulation of eccentric space curved beams
with arbitrary cross–sections is derived. Based on a Timoshenko beam
kinematic the strain measures are derived by exploitation of the Green–
Lagrangean strain tensor. Thus the formulation is conform with exist-
ing nonlinear shell theories. Finite rotations are described by orthogonal
transformations of the basis systems from the initial to the current con-
figuration. Since for arbitrary cross–sections the centroid and shear center
do not coincide torsion bending coupling occurs in the linear as well as in
the finite deformation case. The linearization of the boundary value for-
mulation leads to a symmetric bilinear form for conservative loads. The
resulting finite element model is characterized by 6 degrees of freedom at
the nodes and therefore is fully compatible with existing shell elements.
Since the reference curve lies arbitrarily to the line of centroids the el-
ement can be used to model eccentric stiffener of shells with arbitrary
cross–sections.

1 Introduction

Three–dimensional beam–like structures undergoing large displacements and
rotations occur in different areas of engineering practice. Here motions of flex-
ible beams like helicopter blades, rotor blades, robot arms or beams in space–
structure technology are mentioned. Numerous papers have been published
up to now using different approaches and some of them are discussed in the
following.

Due to the non–commutativity of successive finite rotations about fixed axes,
Argyris et. al. introduced the so–called semi–tangential rotations to circum-
vent this difficulty, see [1,2,3]. The authors pointed out, that with this ap-
proach the geometric stiffness matrix becomes symmetric which is important



for the finite element formulation. An updated Lagrangean and a total La-
grangean formulation of a beam are presented for large displacements by Bathe
and Bolourchi [4].

The co–rotational formulation is motivated by the fact that thin structures
undergoing finite deformations are characterized by significant rigid body mo-
tions. (e.g. see Belytschko and Hsieh [5], Crisfield [6] or Nour–Omid [7]).
The basis is an element–independent algorithm, where the rigid body mo-
tions (translations and rotations) are separated from the total deformation.
Thus within the procedure existing linear elements are used for nonlinear com-
putations, however usually restricted to small strains.

Several finite element formulations for three–dimensional beams are based on
strain–measures derived from the principle of virtual work, Reissner [8]. The
consistent linearization considering a multiplicative update procedure leads
to a non–symmetric geometric tangent stiffness, which becomes symmetric at
an equilibrium configuration under a conservative loading, see Simo and Vu–
Quoc [9,10], Cordona and Géradin [11]. Ibrahimbegović [12] shows that the
linearization ends up with symmetric matrices for an additive update of the
axial vector. However this leads to a number of very complicated terms.

Most of the finite element formulations deal with beams where centroid and
center of shear coincide. The problem of coupled bending torsion deformation
of beams has been studied theoretically e.g. by Reissner [13,14]. In Ref. [10]
torsion–warping deformation has been incorporated within the theory. The
warping function is multiplied with an additional independent degree of free-
dom. However the resulting finite beam element with seven nodal degrees of
freedom does not allow any eccentricities. An eccentric beam element with
rectangular cross–sections has been developed e.g. by Weimar [15].

In this paper we aim to provide three–dimensional finite beam–elements based
on a Timoshenko kinematic with transverse shear strains. The reference axis
is a space curve which is independent of the line of centroids or shear center.
A main goal of the paper is to retain the number of independent kinematic
quantities to six. These type of elements are useful to discretize eccentric
stiffener of shells.

The essential features and novel aspects of the present formulation are sum-
marized:

(i) Based on a kinematic assumption the beam strains for finite deformations
are derived by exploitation of the Green–Lagrangean strain tensor. This
procedure is consistent with existing shell theories. In contrast to that,
the authors of e.g. Refs. [9,10,11,12] propose finite element formulations
with different beam strains.
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(ii) To keep the number of independent kinematic quantities to six the warp-
ing degree of freedom is eliminated using additional constraints. The
equations of Saint–Venant torsion theory along with Green’s formula are
applied to integrate the so–called warping coordinates. This leads to a
material matrix in terms of section quantities which describes the cou-
pling effects. Furthermore the weak form of the boundary value problem
is linearized analytically which results into a symmetric bilinear form.

(iii) Much effort has been undertaken to make the beam formulation fully
consistent with existing shell formulations. Thus the associated finite ele-
ment formulation is characterized by the fact, that the six nodal degrees
of freedom are identical to those of existing shell elements, see e.g. [16].
The element allows coupling of eccentric beams with thin–walled struc-
tures discretized by shell elements. Therefore the developed element can
be used to discretize stiffener of shells with arbitrary cross–sections.

The contents of the paper is outlined as follows:
Based on a kinematic assumption the beam strains are derived from the
Green–Lagrangean strain tensor in the next section. The underlying varia-
tional formulation in a Lagrangean representation is depicted in section 3.
The associated weak formulation of the boundary value problem is written
in terms of stress–resultants. It is shown, that the variational equations can
be rewritten with transformed stress–resultants. This leads to work conjugate
beam strains which have been discussed in the literature. Furthermore the
linearized boundary value problem is given. Assuming linear elastic behaviour
the constitutive equations in terms of stress resultants are derived in section
4. In section 5 the associated finite element formulation using Lagrangean in-
terpolation functions is presented. Several numerical examples are presented
in section 6. Comparisons of our results are made if possible with those re-
ported in the literature. Further comparisons are given, where the beams are
discretized with shell elements.

2 Kinematic description of the beam

In this section we consider a beam with reference configuration denoted by
B0, see Fig. 1. We introduce the orthogonal basis system Ai = R0 ei with
associated coordinates {ξ1, ξ2, ξ3} where ei denotes the fixed cartesian basis
system. The axis of the beam is initially along A1 with the arc–length pa-
rameter S = ξ1 ∈ [0, L] of the spatial curve. The cross–sections of the beam
therefore lie in planes described by the basis vectors {A2,A3}.

The position vectors of the undeformed and deformed cross–sections are given
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Fig. 1. Initial and current configuration of the beam, definition of the reference
basis, ei and Ai and the current frame ai

with the following kinematic assumption

X(ξ2, ξ3, S) = X0(S) + ξ2A2(S) + ξ3A3(S)

x(ξ2, ξ3, S, t) = x0(S, t) + ξ2a2(S, t) + ξ3a3(S, t) + α(S, t) w̃(ξ2, ξ3) a
1(S, t)

(1)
with a1 ·x′

0 = 1 and a1 ·aβ = 0 where β = 2, 3. First α(S, t) is an independent
kinematic quantity which will be eliminated using additional constraints.

The basis vectors Ai and ai are orthonormal and are obtained from

Ai = R0 ei , ai = Rei , (2)

where the tensors R0,R ∈ SO(3) fulfill RT
0 R0 = 1 and RTR = 1, respectively.

Thus the derivatives of Ai and ai can be expressed as

A′
i = θ0 × Ai a′

i = θ × ai (3)

where we use the customary symbol (·)′ to denote the differentiation ∂/∂ξ1 =
∂/∂S. Several representations of orthogonal tensors using Eulerian angles,
Cardan angles, quaternions etc. have been discussed in the literature, see e.g.
Argyris [17], Géradin et.al. [18]. The rotation tensor and the derivative with
respect to S are specified in appendix A.1.

The warping function w̃(ξ2, ξ3) is defined within the Saint–Venant torsion
theory for beams. The equilibrium equations and boundary conditions of a
prismatical beam with cross–section A and with the outward normal vector
n = [n2, n3]

T along the boundary C subjected to torsion yields the following
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equations, see e.g. Sokolnikoff [19]

w̃,22 +w̃,33 = 0 in A

w̃,2 n2 + w̃,3 n3 = (ξ3 − m3)n2 − (ξ2 − m2)n3 on C .
(4)

Here the notation (·),i is used to denote partial derivatives with respect to
the coordinates ξi. The solution of the Neumann problem (4) along with the
normality conditions

∫

(A)

w̃ dA = 0 ,
∫

(A)

w̃ ξ2 dA = 0 ,
∫

(A)

w̃ ξ3 dA = 0 (5)

defines the shear center M with coordinates {m2,m3}.

Hence the derivatives of the position vectors with respect to the coordinates
ξ1, ξ2, ξ3 lead to

X,1 = X′
0 + ξ2A

′
2 + ξ3A

′
3

X,2 = A2

X,3 = A3

x,1 = x′
0 + ξ2a

′
2 + ξ3a

′
3 + w̃ (α′a1 + α a′1)

x,2 = a2 + α w̃,2 a1

x,3 = a3 + α w̃,3 a1

(6)
The tangent vectors Gi = X,i and gi = x,i are inserted into the Green–
Lagrangean strain tensor E = EijG

i ⊗ Gj. The components with respect to
the dual basis system Gi defined by Gi · Gj = δj

i read

Eij =
1

2
(x,i ·x,j −X,i ·X,j ) . (7)

Using matrix notation the non–vanishing components of the Green–Lagran-
gean strain tensor read

E = Ā Ē (8)

where

E =




E11

2E12

2E13




, Ā =




1 ξ3 ξ2 0 0 0 0 w̃

0 0 0 1 0 −ξ3 w̃,2 0

0 0 0 0 1 ξ2 w̃,3 0




, Ē =




Ê

α

α′




(9)
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and

Ê =




ε

κ2

κ3

γ2

γ3

ϑ




=




1

2
(x′

0 · x′
0 − X′

0 · X′
0)

x′
0 · a′

3 − X′
0 · A′

3

x′
0 · a′

2 − X′
0 · A′

2

x′
0 · a2 − X′

0 · A2

x′
0 · a3 − X′

0 · A3

a′
2 · a3 − A′

2 · A3




.

(10)

Here we make use of the relation a′
2 · a3 = −a′

3 · a2 = θ · a1. Note, that
products of ξβ, w̃, α, α′ and x′

0 · a′1 of higher order are neglected in (9). This
is justified for thin beams undergoing small strains. A comparison with other
beam strains is given in section 3.1.

Our main goal is to keep the number of independent degrees of freedom to
six. This can be achieved introducing the following constraints:

Mw = CM α′ = 0 and α = ϑ (11)

where Mw and CM =
∫
A w̃2 dA denote the so–called bi–moment and warping

constant, respectively. Numerical examples show in many cases that for elas-
ticity the contribution of the bi–moment to the stored energy is neglectable.
However, it should be emphasized that this does not hold in any case.

Hence relation (8) is simplified using the constraints (11)

E = AÊ and A =




1 ξ3 ξ2 0 0 0

0 0 0 1 0 −ξ̃3

0 0 0 0 1 ξ̃2




(12)

with the modified coordinates ξ̃2 = ξ2 + w̃,3 and ξ̃3 = ξ3 − w̃,2.

3 Variational formulation

In the following the virtual works of the stresses and the external forces are
derived for the beam kinematics. For this purpose stress resultants and stress
couple resultants are defined. The linearization of the weak form of equilibrium
is derived analytically which leads to a symmetric bilinear form for conserva-
tive loading.
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3.1 Virtual works of stress resultants and external forces

Starting with the equilibrium in weak form of a body B in a Lagrangean
setting we obtain

G(u, δu) =
∫

B0

S · δE dV −
∫

B0

ρ0b̂ · δu dV −
∫

∂B0

t̂ · δu dΩ = 0 (13)

where ρ0b̂ and t̂ are applied body forces and surface forces, respectively. The
Green–Lagrangean strain tensor is work conjugate to the Second Piola–Kirch-
hoff stress tensor S = Sij Gi ⊗ Gj. Within the beam theory the components
S22, S33, S23 are assumed to be zero. The independent kinematic quantities of
the beam are v = [u,R]T . Here u = x0 − X0 and R = ai ⊗ ei denote the
displacement vector and the rotation tensor of the reference curve according
to (1), respectively. Hence the space of kinematically admissible variations is
introduced by

V := {δv = [δu, δw]T : [0, L] −→ R3| δv = 0 on Su} (14)

where Su describes the boundaries with prescribed displacements and rota-
tions.

First the internal virtual work Gint considering (12) and S22 = S33 = S23 = 0
is reformulated

Gint =
∫

B0

S · δE dV =
∫

S

δÊT Ŝ dS (15)

which defines the vector of stress resultants

Ŝ =




N

M2

M3

Q2

Q3

M1




=
∫

A




S11

S11ξ3

S11ξ2

S12

S13

S13ξ̃2 − S12ξ̃3




dA (16)
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and the work conjugate beam strains

δÊ =




δε

δκ2

δκ3

δγ2

δγ3

δϑ




=




x′
0 · δu′

a′
3 · δu′ + x′

0 · δa′
3

a′
2 · δu′ + x′

0 · δa′
2

a2 · δu′ + x′
0 · δa2

a3 · δu′ + x′
0 · δa3

a1 · δθ + θ · δa1




(17)

The variation of the basis vector ai and subsequent derivative with respect to
the arc–length follows from (2)

δai = δw × ai

δa′
i = δw′ × ai + δw × a′

i

δw′ = δθ − δw × θ

(18)

Eq. (18)3 is proofed in appendix A.2.

Thus introducing the matrix differential operator L one obtains the variation
of the strain vector

δÊ = H (L δv) H =




x′T
0 0 0

a′T
3 b′T

3 bT
3

a′T
2 b′T

2 bT
2

aT
2 bT

2 0

aT
3 bT

3 0

0 0 aT
1




L =




d

dS
1 0

0 1

0
d

dS
1




(19)

with the definitions bi := ai × x′
0 and b′

i := a′
i × x′

0.

Next the external virtual work is specified for the beam configuration. The
body forces ρ0b̂ are neglected in the following. Furthermore we assume external
loads p̂ = p̂(S) acting at the coordinates {ξ2, ξ3} = {p2, p3}, see Fig. 1. In this
case the variation reads

Gext(v, δv) = −
∫

S

p̂ · δxP dS (20)
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with xP = x0 + p2 a2 + p3 a3. Thus applying (18)1 yields

Gext(v, δv) = −
∫

S

p̂ · (δu + p2 δa2 + p3 δa3) dS

= −
∫

S

(p̂ · δu + m̂ · δw) dS

(21)

with m̂ = d × p̂ and d = p2 a2 + p3 a3.

Hence the weak form of equilibrium (13) considering (15) and (21) can be
rewritten

G(v, δv) =
∫

S

[f · δu′ + (f × x′
0) · δw + m · δw′] dS −

∫

S

(p̂ · δu + m̂ · δw) dS

=
∫

S

(L δv)T σ̂ dS −
∫

S

δvT q̂ dS = 0

(22)

where

σ̂ = HT Ŝ =




f

f × x′
0

m




q̂ =


 p̂

m̂


 (23)

and the vector of stress resultants f and stress couple resultants m

f = N x′
0 + n n = q − l × θ

m = M1a1 + l × x′
0 q = Q2a2 + Q3a3 l = M2a3 + M3a2 .

(24)

The local Euler–Lagrange equations are obtained integrating equation (22) by
parts

G(v, δv) = −
∫

S

[(f ′ + p̂) · δu + (m′ + x′
0 × f + m̂) · δw] dS = 0 (25)

where for simplicity we assume that the stress resultants are zero at the bound-
aries. Applying standard arguments the terms in brackets have to vanish,
which describe the well–known equilibrium equations of a three–dimensional
beam for the static case, e.g. see [20,8].
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Remark 1 The internal virtual work can be reformulated using (18)3

Gint =
∫

S

[f · (δu′ − δw × x′
0) + m · (δθ − δw × θ)] dS

=
∫

S

(F · δε + M · δκ) dS
(26)

with F = RT f , M = RTm and the work conjugate strain vectors

ε = RTx′
0 − RT

0 X′
0 κ = RT θ − RT

0 θ0 . (27)

These strain measures have been proposed by Reissner [8]. Later different
parametrizations for finite element formulations have been developed by several
authors, e.g. see [9,11,12]. Thus (26) shows that the internal virtual work can
be written either in terms of Second Piola–Kirchhoff stress–resultants (16) or
with stress–resultants F̂ i = f · ai and M̂ i = m · ai. The component represen-
tation of (22) can be transformed into one of each other. The only difference
which occurs follows from the used material law. The transformation between
both type of stress resultants is given by




F̂ 1

F̂ 2

F̂ 3

M̂1

M̂2

M̂3




=




x′
0 · a1 0 0 0 θ · a2 θ · a3

x′
0 · a2 1 0 0 −θ · a1 0

x′
0 · a3 0 1 0 0 −θ · a1

0 0 0 1 −x′
0 · a2 −x′

0 · a3

0 0 0 0 x′
0 · a1 0

0 0 0 0 0 x′
0 · a1







N

Q2

Q3

M1

M2

−M3




(28)

For small strains the strain vectors approximate x′
0 ≈ a1 and θ ≈ 0. There-

fore the transformation matrix between both type of stress resultants is ap-
proximately the identity matrix. Thus in case of small strains the numerical
results of both formulations agree practically, which can also be seen from the
examples in section 6.

3.2 Linearization of the weak form of equilibrium

For the subsequent finite element formulation we need to derive the lineariza-
tion of the boundary value problem (13). This is formally achieved using the
directional derivative

L[G(v, δv)] = G + DG · ∆v DG · ∆v =
d

dε
[G(v + ε∆v)]ε=0 (29)
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where ∆v = [∆u, ∆w]T ∈ W fulfils the boundary conditions on Su. First
linearization of the internal virtual work leads to

DGint(v, δv) · ∆v =
∫

S

(δÊTD∆Ê + ∆δÊT Ŝ) dS (30)

where D := ∂Ŝ/∂Ê is specified for special constitutive behaviour in the next
section. The linearized beam strains ∆Ê = [∆ε, ∆κ2, ∆κ3, ∆γ2, ∆γ3, ∆ϑ]T can
be expressed by

∆Ê = H (L∆v) . (31)

Next the geometric part of (30) is derived considering (22)

∫

S

∆δÊT Ŝ dS =
∫

S

(L δv)T ∆σ̂ dS . (32)

with ∆σ̂ = ∆HT Ŝ where the stress resultants Ŝ are hold fixed. The lineariza-
tion of the basis vectors ai and associated derivatives read

∆ai = ∆w × ai = Wi ∆w

∆a′
i = ∆w × a′

i + ∆w′ × ai

(33)

which leads to

∆σ̂ =




∆f

n × ∆u′ + ∆n × x′
0

∆m




=




N∆u′ + ∆w × n + ∆w′ × l

n × ∆u′ + (∆w × n + ∆w′ × l) × x′
0

∆w × M1a1 + l × ∆u′ + (∆w × l) × x′
0




.

Using the relation (a × b) × c = [b ⊗ c − (b · c)1] a the tensors An and
Al are defined. Furthermore the skew–symmetric tensors Wn and Wl can be
computed

An = n ⊗ x′
0 − (n · x′

0)1 Wn a = a × n ∀ a

Al = l ⊗ x′
0 − (l · x′

0)1 Wl a = a × l

(34)

and one obtains

∆σ̂ =




N∆u′ + Wn∆w + Wl∆w′

WT
n ∆u′ + An∆w + Al∆w′

WT
l ∆u′ + (M1W1 + Al)∆w




.

(35)

11



The linearization of external virtual work (21) reads

DGext(v, δv) · ∆v = −
∫

S

δw · ∆m̂ dS =
∫

S

δw · Â∆w dS (36)

with Â = −[d ⊗ p̂ − (d · p̂)1]. Above equations show that m̂ and Â vanish
as the vector d goes to zero. This is the case when the loading acts on the
reference curve.

Hence the final version of (29) reads

DG(v, δv) · ∆v =
∫

S

(L δv)T (D̂ + G + P̂) (L∆v) dS

D̂ = HTDH , G =




N1 Wn Wl

WT
n An Al

WT
l M1W1 + Al 0




,

P̂ =




0 0 0

0 Â 0

0 0 0




.

(37)

As can be seen, the material part D̂ is symmetric provided D is symmetric,
whereas the geometric matrix G and the load stiffness matrix P̂ are non–
symmetric.

The condition of conservative loading can be written as

m̂(S) = 0 S ∈ [0, L] and [m · (δω × ∆ω)]LS=0 = 0 . (38)

Since the variation δv ∈ V has to be a kinematically admissible function
the boundary term vanishes in view of (14) on boundaries with prescribed
rotations. However the boundary term does not vanish for the case of an
applied end moment with ”fixed spatial axes”, see Refs. [1,2]. In the following
it is assumed that (38) holds.

Hence the geometric stiffness G becomes symmetric if the transformation

δw = T(∆ω) δω (39)

is introduced.
The tensor T(∆ω) can be chosen arbitrarily with T(∆ω = 0) = 1. Thus
δw = δω holds at an equilibrium configuration. The infinitesimal rotations
δw are comparable with the semi–tangential rotations introduced by Argyris
et.al. [1] – [3], [17]. Now the linearization of the internal virtual work (30) with
respect to ∆ṽ = [∆u, ∆ω]T is rewritten. Considering (25), (38) and a special
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choice of T(∆ω) with ∆δw = 1/2∆ω × δω one obtains

DGint(v, δv) · ∆ṽ =
∫

S

(L δṽ)T (D̂ + G) (L∆ṽ) dS

− 1

2

∫

S

[(m′ + x′
0 × f) · (∆ω × δω)] dS .

(40)

The geometric matrix G = GS + GA is separated into the symmetric part
GS = 1/2(G + GT ) and the skew–symmetric part GA = 1/2(G − GT ). Fur-
thermore the skew–symmetric tensors and associated axial vectors are intro-
duced

AA
n ∆ω =

1

2
(n ⊗ x′

0 − x′
0 ⊗ n) ∆ω

=
1

2
(x′

0 × n) × ∆ω =
1

2
(x′

0 × f) × ∆ω

(
1

2
M1W1 + AA

l ) ∆ω =
1

2
(M1W1 + l ⊗ x′

0 − x′
0 ⊗ l) ∆ω

= −1

2
(M1a1 + l × x′

0) × ∆ω = −1

2
m × ∆ω .

(41)

Integration by parts and further reformulation using (41) is applied to the
second integral of (40)

−1

2

∫

S

[m · (δω × ∆ω)′ − (x′
0 × f) · (δω × ∆ω)] dS

= −1

2

∫

S

{δω · [(x′
0 × f) × ∆ω] − δω · (m × ∆ω′) − δω′ · (m × ∆ω)} dS

= −
∫

S

δω · [AA
n ∆ω + (

1

2
M1W1 + AA

l ) ∆ω′] + δω′ · (1
2
M1W1 + AA

l ) ∆ω] dS

= −
∫

S

(L δṽ)T GA (L∆ṽ) dS

which shows that the skew–symmetric part of G in (40) cancels out.

Next the linearization of the external virtual work (36) is rewritten considering

13



the metric (39)

DGext(v, δv) · ∆ṽ = −
∫

S

[δω · ∆m̂ +
1

2
m̂ · (∆ω × δω)] dS

= −
∫

S

δω · [∆m̂ +
1

2
(d × p̂) × ∆ω] dS

=
∫

S

δω · [Â − 1

2
(p̂ ⊗ d − d ⊗ p̂)]∆ω dS

=
∫

S

δω · ÂS ∆ω dS

(42)

with ÂS = 1
2
(Â+ ÂT ). This shows that an external loading according to (20)

results into a symmetric load stiffness.

We conclude that for conservative loading the linearization leads to a sym-
metric bilinear form with respect to a special transformation (39)

DG(v, δv) · ∆ṽ =
∫

S

(L δṽ)T (D̂ + GS + P̂S) (L∆ṽ) dS . (43)

Furthermore, provided the loading is conservative, one can show that the
skew–symmetric part of (37) cancels out at an equilibrium configuration for
any T(∆ω), see also [21].

4 Linear Elastic Material Law

In this section we introduce the so–called Saint–Venant–Kirchhoff material
where a linear isotropic relation between S and E is postulated, see e.g. [22].
Since the stress components S22, S33, S23 are assumed to be zero, the nonva-
nishing components are obtained by

S11 = E E11 , S12 = 2 G E12 , S13 = 2 G E13 , (44)

where E and G denote Young’s modulus and shear modulus, respectively.
With these constitutive equations we are restricted to linear elastic material
with small strains. The constitutive relations for the stress resultants (16) can
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easily be derived using (12) as follows




N

M2

M3

Q2

Q3

M1




=
∫

A




E Eξ3 Eξ2 0 0 0

Eξ3 Eξ2
3 Eξ2ξ3 0 0 0

Eξ2 Eξ2ξ3 Eξ2
2 0 0 0

0 0 0 G 0 −Gξ̃3

0 0 0 0 G Gξ̃2

0 0 0 −Gξ̃3 Gξ̃2 G(ξ̃2
2 + ξ̃2

3)




dA




ε

κ2

κ3

γ2

γ3

ϑ




Ŝ = DÊ

(45)

The centroid of the cross–section with coordinates {s2, s3} is denoted by S, see
Fig. 1. Furthermore we denote the area of the cross–section by A, the moments
of inertia relative to the centroid by I22, I33, I23 and the Saint–Venant torsion
modulus by IT and introduce the following definitions

Sα :=
∫

A

ξαdA = Asα (α = 2, 3)

Ĩαβ :=
∫

A

ξαξβ dA = Iαβ + Asαsβ (α, β = 2, 3)

IT :=
∫

A

[(ξ2 − m2)
2 + (ξ3 − m3)

2 + w̃,3 (ξ2 − m2) − w̃,2 (ξ3 − m3)] dA .

(46)
Using the equations of Saint–Venants torsion theory (4) and application of
Green’s theorem yields after some algebra the missing quantities, see appendix
A.3

Mα :=
∫

A

ξ̃α dA = Amα (α = 2, 3)

ĨT :=
∫

A

(ξ̃2
2 + ξ̃2

3) dA = IT + A(m2
2 + m2

3) .
(47)
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Hence with (46) and (47) the elasticity matrix is expressed in terms of section
quantities in the following form

D =




EA EAs3 EAs2 0 0 0

EAs3 EĨ22 EĨ23 0 0 0

EAs2 EĨ23 EĨ33 0 0 0

0 0 0 GA 0 −GAm3

0 0 0 0 GA GAm2

0 0 0 −GAm3 GAm2 GĨT




.

(48)

We note that the elasticity matrix is constant and symmetric. As can be seen
torsion–bending coupling occurs if the reference point O and the shear center
M with coordinates {m2,m3} do not coincide. If the coordinates {ξ2, ξ3} define
principal axes of the cross–section and if S = M = O one obtains the well–
known diagonal matrix D = diag [EA,EI22, EI33, GA,GA,GIT ] .

5 Finite Element Approximation

In this section we describe the finite element approximation associated with
the continuum weak form (22). According to the isoparametric concept, the
following kinematic variables are interpolated with standard Lagrangean shape
functions NI(ξ), e.g. see [23]. The normalized coordinate is defined in the range
−1 ≤ ξ ≤ +1. Within an element the position vector of the reference curve
Sh

0 and the curve Sh of the current configuration are interpolated by

Xh
0 =

nel∑
I=1

NI(ξ)XI , xh
0 =

nel∑
I=1

NI(ξ)(XI + uI) . (49)

Here nel denotes the number of nodes at the element. For nel ≥ 3 the reference
curve of a space–curved beam is approximated by polynomial functions.

The derivative of the shape functions NI(ξ) with respect to the arc–length pa-
rameter S can now be expressed using the chain rule N ′

I(ξ) = NI(ξ),ξ /|Xh
0 ,ξ |.

Introducing the matrix BI which contains the shape functions NI and the
derivatives N ′

I

BI =




N ′
I1 0

0 NI1

0 N ′
I1




(50)
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the variation δvh ∈ Vh and the linearization ∆vh ∈ Wh follow from the finite
element approximation

L δvh =
nel∑
I=1

BI δvI L∆vh =
nel∑

K=1

BK ∆vK . (51)

where δvI = [δuI , δωI ]
T and ∆vK = [∆uK , ∆ωK ]T . The tangential vectors X′

0

and x′
0 are given replacing NI by N ′

I in (49). Furthermore the basis vectors ai

and the associated derivatives a′
i are obtained within the multiplicative update

procedure according to appendix A.1.

The finite element interpolation (51) is inserted into the linearized boundary
value problem (29)

L[G(vh, δvh)] = A
e=1

numel nel∑
I=1

nel∑
K=1

δvT
I (f e

I + Ke
IK∆vK) . (52)

where A denotes the standard assembly operator and numel the total number
of elements to discretize the problem. Furthermore f e

I and Ke
IK denote the sum

of the internal and external nodal forces of node I and the tangential stiffness
matrix of element e related to nodes I and K, respectively. Considering (22)
and (37) one obtains

f e
I =

∫

S

BT
I σ̂h dS −

∫

S

NI q̂h dS

Ke
IK =

∫

S

BT
I (D̂ + G + P̂)BK dS .

(53)

The stress resultants Ŝh follow from the material law (45) and are summarized
in the vector σ̂h = HT Ŝh according to (23)1. The loading is approximated by
p̂h(S) =

∑nel
I NI(ξ)p̂I which yields the vector q̂h according to (23)2. In case of

conservative loading the matrices G and P̂ can be replaced by its symmetric
part, see eq. (43).

Application of the chain rule yields the differential arc–length dS = |Xh
0 ,ξ | dξ.

The integration of the element residual and element stiffness matrix (53) with
respect to the coordinate S is performed numerically. To avoid locking effects
uniform reduced integration is applied to all quantities. Eq. (52) leads to
a linear system of equations for the incremental nodal degrees of freedom.
Hence the equilibrium configuration is computed iteratively within the Newton
iteration procedure.
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6 Numerical examples

The element scheme has been implemented in an enhanced version of the
program FEAP documented in [23]. In this section several nonlinear examples
with large deformations are presented. The first two examples are taken from
the literature. The third example is concerned with a cross–section where the
centroid, center of shear and loading point are not identical, thus bending
and torsion coupling occurs. Within the last example a coupled beam–shell
problem is solved. If possible comparisons with available solutions from the
literature are given.

6.1 Right angle frame under applied end moments

Our first example is a hinged right–angle frame first introduced by Argyris
[2] and later analyzed by several other authors, e.g. [9,7]. The geometry and
boundary conditions are illustrated in Fig. 2. Since the width to thickness
ratio is 50 the cross–section is very slender, thus provides a severe test for the
element formulation. At the support translation along x and rotation about z
is permitted. At this point a moment about z is applied. The solution obtained
with 10 three–noded beam elements for half the system is depicted in Fig. 3.

L L

x

y

z

b

h

M M

L � ��� mm
h � �� mm
b � ��� mm

E � ����� N�mm�

� � ����

Fig. 2. Right angle frame under applied end moments

A primary path represents the two–dimensional response in the x–y plane. A
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bifurcation point is found at a load level of 622.7Nmm. A switch to the sec-
ondary path is possible by a perturbation of the primary solution with the first
eigenvector. The secondary path exhibits the full three–dimensional response
with two complete revolutions. One has to apply the arc–length–method to
compute the entire load deflection curve according to Fig. 3. Although the
reference solution [9] is based on different strain measures there is practically
complete agreement. Table 1 shows a comparison of the residual norm and
the energy norm computed from the symmetric and the non–symmetric tan-
gent stiffness matrix at a displacement step from 60 ≤ uz ≤ 62 mm. Since
both versions are obtained by linearization of the weak form of equilibrium
quadratic convergence is given in both cases. A sequence of deformed meshes
is plotted in a perspective view in Fig. 4, where the rotation ϕz of the loading
point is parameter of the different configurations.

Table 1
Residual norm and energy norm computed from the symmetric and non–symmetric
stiffness matrix

Symmetric Non–symmetric

Residual norm Energy norm Residual norm Energy norm

2.5280E+03 1.9640E+04 2.5280E+03 1.9640E+04

2.1283E+03 4.2304E+00 2.1282E+03 4.2307E+00

3.9302E+00 8.3562E–01 1.2138E+00 1.9723E–01

3.9407E+00 1.4288E–05 7.4304E–01 1.4490E–06

1.9704E+00 3.6367E–06 3.7152E–01 3.6258E–07

1.5563E–04 7.1588E–11 6.3715E–06 2.7374E–13

3.8042E–08 1.7320E–21 2.2713E–08 3.9757E–22
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6.2 Hockling problem of a cable under torsion

In Fig. 5 a cable segment with associated geometrical and material data is
depicted. The boundary conditions are as follows: at x = 0 all displacements
and rotations are restrained and at x = l only translation along x and rotation
about x is permitted. The discretization is performed with 20 two–noded beam
elements. The torque applied to the cable is increased up to a critical value of
225.4 Nmm. Here bifurcation to a secondary path which is characterized by
a lower energy mode is possible.

x

y

z

L

M

L � ��� mm

Ix � ���� mm�

Iy � Iz � ������ mm�

E � ����� N�mm�

� � ����

Fig. 5. Cable segment under torsion

The results of our calculation are depicted in Fig. 6. As can be seen there is
complete agreement with the reference solution in [7]. A sequence of deformed
configurations of the cable with rotational parameter ϕx of the loading point
is plotted in Fig. 7.

6.3 Channel–section beam

A channel–section beam clamped at one end and subjected to a tip force at
the free end is investigated next. Fig. 8 contains the problem description with
geometrical and material data. The load is applied at the top of the web.
The discretization is performed with 20 two–noded beam elements and in the
second case with 180 four–noded shell elements, see Ref. [16]. For the shell
discretization the mesh consists of 18 elements along the length direction, 6
elements along the web and 2 elements for each flange. In the following the
vertical displacement w of point O at the cantilever tip is computed. We obtain
a linear solution w = 1.48 cm with the beam discretization and w = 1.47 cm
with the shell discretization at P = 1 kN . Furthermore the nonlinear response
is computed up to P = 20 kN . The results for both models agree good in wide
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Fig. 7. Deformed configurations of the cable for different loads

ranges of the computed load deflection curve, see Fig. 9. Finally Fig. 10 shows
the undeformed mesh and the configuration at P = 9 kN .
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Fig. 9. Load deflection curves of the channel–section beam

6.4 Stiffened plate

The main goal of this paper is the development of a beam element which can
be used to discretize eccentric stiffeners of thin–walled structures. Therefore in
this example the coupling of the beam with shell elements is investigated. Fig.
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�A� Detail A

Fig. 10. Undeformed and deformed channel–section beam at P = 9 kN

Table 2
Vertical displacement w for P = 0.1 kN (linear solution)

discretization L 2.0 × 2.0 × 0.3 L 5.0 × 4.0 × 0.5

shell – shell 12.094 cm 2.417 cm

shell – beam 11.976 cm 2.410 cm

11 shows the cross–section of a plate with two types of stiffeners. Furthermore
the loading and the material data are given. The length and width of the plate
are L = 300 cm and b = 80 cm, respectively. The linear and nonlinear solutions
are computed using two types of different discretizations. In both cases the
plate is modeled using 20 four–noded shell elements in length direction and
10 elements in transverse direction. In the first case the L– shaped beam is
discretized with 20 shell elements in length direction, 3 elements for the vertical
leg and 2 elements for the horizontal leg. In the second case 20 two–noded beam
elements are used. The vertical displacement of the loading point is computed
for various load levels. First the linear solution is given in Table 2 for the
shell–shell and the shell–beam discretization. The vertical displacement of the
plate without stiffener is w = 51.73 cm. Thus the stiffener leads to a significant
reduction of the deformation. The nonlinear results are plotted in Fig. 12. For
the thick stiffener the results agree practically up to w ≈ 75 cm. Furthermore
there is almost complete agreement of the computed load deflection curve of
the thin stiffener. The undeformed and deformed structures are depicted in
Fig. 13. It can be seen that large deformations occur.
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Fig. 11. Stiffened plate, problem description
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Fig. 12. Load deflection curves of the stiffened plate
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Fig. 13. Plot of the deformed stiffened plate with a shell discretization
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7 Conclusions

In this paper the finite element formulation of a three–dimensional beam with
arbitrary cross sections is developed. The arbitrary case is characterized by the
fact that centroid and shear center do not coincide and torsion bending cou-
pling occurs. Hence the kinematic assumption includes warping of the cross–
sections. The beam strains are derived from the Green–Lagrangean strain
tensor. Using additional constraints the kinematics can be described by six
parameters. This leads to good numerical results if the so–called bi–moment
does not play a significant role. Integrals of the warping function are reformu-
lated using Green’s formula and the equations of Saint–Venant torsion theory
which leads to quantities of the cross–section. The resulting constitutive equa-
tion in terms of stress resultants yields a matrix representation where coupling
of the shear forces with the torsion moment occurs. A comparison of the weak
formulation with other stress resultants and work conjugate strains is pre-
sented. The derived linearized boundary value problem leads to a symmetric
tangent operator for conservative loading.

The developed finite element model is fully consistent with existing six–para-
meter shell elements. Due to the arbitrary reference curve it can be used to
model eccentric stiffener of shells. The computed results agree with available
solutions from the literature. Further comparisons are given, where the beams
are discretized with shell elements. Here also good agreement between the
different models can be shown in large ranges of the computed load–deflection
curves.

A Appendix

A.1 Rotation tensor and derivatives

In this appendix the orthogonal transformation (2) is specified. Here we adopt
the multiplicative update procedure within the Newton iteration process as
has been proposed for shells in Ref. [24]

a
(n+1)
i = ∆R a

(n)
i with a

(0)
i = Ai (A.1)

where n denotes the iteration index. Hence ∆R can be expressed as

∆R = 1 + c ∆Ω +
c

2
∆Ω2 c = (1 +

∆ω2

4
)−1 (A.2)
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with ∆ω = |∆ω| and the skew–symmetric tensor ∆Ω defined by ∆Ωa =
∆ω × a ∀a.

From this equation, it is clear that ∆R reduces to the identity tensor as the
incremental axial vector ∆ω goes to zero. One can easily verify that ∆R
fulfills the orthogonality condition ∆RT ∆R = 1. Furthermore we emphasize
that (A.2) does not require any trigonometric functions. However it should be
noted that above representation of the rotation tensor has to be used within a
multiplicative update procedure, since it provides an approximation for finite
rotations.

The derivative of the basis vectors ai with respect to the arc–length S yields

a′(n+1)
i = ∆R′ a(n)

i + ∆Ra′(n)
i

= ∆R′∆RTa
(n+1)
i + ∆Ra′(n)

i

= ∆θ × a
(n+1)
i + ∆Ra′(n)

i

(A.3)

The derivative of ∆R follows from (A.2)

∆R′ = c′ ∆Ω +
c′

2
∆Ω2 + c ∆Ω′ +

c

2
(∆Ω′∆Ω + ∆Ω∆Ω′) (A.4)

where c′ = −c2(∆ω′ · ∆ω)/2 .

Using the following relations, see e.g. Argyris [17]

∆Ω2 = ∆ω ⊗ ∆ω − ∆ω21 ∆Ω′∆Ω = ∆ω ⊗ ∆ω′ − (∆ω · ∆ω′)1

∆Ω3 = −∆ω2 ∆Ω ∆Ω∆Ω′∆Ω = −(∆ω · ∆ω′) ∆Ω

(A.5)
one obtains after some algebra

∆R′ ∆RT = c ∆Ω′ +
c

2
(∆ω′ ⊗ ∆ω − ∆ω ⊗ ∆ω′) (A.6)

and the associated axial vector

∆θ = c (1 +
1

2
∆Ω) ∆ω′ . (A.7)

A.2 Proof of relation (18)3

Since the sequence of variation and partial derivative can be exchanged the
following relation holds

(δai)
′ = δ(a′

i) . (A.8)
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Using (3) and (18)1 one obtains

δw′ × ai + δw × (θ × ai) = δθ × ai + θ × (δw × ai) . (A.9)

Application of the Lagrangean identity for double vector products leads to

(δw′ − δθ + δw × θ) × ai = 0 . (A.10)

Equation (A.10) only holds for arbitrary ai if the term in brackets vanishes
which proofs (18)3 .

A.3 Proof of integrals (47)

Using (4)1 the following integral is reformulated such that Green’s formula
can be applied

∫

A

w̃,2 dA =
∫

A

[(ξ2w̃,2 ),2 +(ξ2w̃,3 ),3 ] dA =
∮

C

[ξ2(w̃,2 n2 + w̃,3 n3)] dC

(A.11)
Then inserting boundary condition (4)2 yields

∮

C

[ξ2(w̃,2 n2 + w̃,3 n3)] dC =
∮

C

[ξ2(ξ3 − m3)n2 − ξ2(ξ2 − m2)n3] dC (A.12)

Again application of Green’s formula leads to

∮

C

[ξ2(ξ3 − m3)n2 − ξ2(ξ2 − m2)n3] dC

=
∫

A

{[ξ2(ξ3 − m3)],2 −[ξ2(ξ2 − m2)],3 } dA

=
∫

A

(ξ3 − m3) dA = −(m3 − s3) A

(A.13)

which proofs (47)1 along with (46)1 for α = 3.

In an analogous way one obtains

∫

A

w̃,3 dA = −
∫

A

(ξ2 − m2) dA = (m2 − s2) A (A.14)

which yields the case α = 2 in (47)1.
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Finally the integral (47)2 is reformulated

∫

A

(ξ̃2
2 + ξ̃2

3) dA

=
∫

A

(ξ2
2 + ξ2

3 + 2ξ2w̃,3 −2ξ3w̃,2 +w̃2,2 +w̃2,3 ) dA

=
∫

A

[(ξ2 − m2)
2 + (ξ3 − m3)

2 + ξ2m2 + ξ3m3 + ξ2w̃,3 −ξ3w̃,2 ] dA

+
∫

A

[m2(ξ2 − m2) + m3(ξ3 − m3)] dA

+
∫

A

[w̃,2 (−ξ3 + w̃,2 ) + w̃,3 (ξ2 + w̃,3 )] dA .

(A.15)

The second integral in (A.15) using (A.11) – (A.14) yields

∫

A

[m2(ξ2 − m2) + m3(ξ3 − m3)] dA =
∫

A

[−w̃,3 m2 + w̃,2 m3] dA (A.16)

and the third integral is reformulated with (4)1 and Green’s formula

∫

A

[w̃,2 (−ξ3 + w̃,2 ) + w̃,3 (ξ2 + w̃,3 )] dA

=
∫

A

{[w̃(−ξ3 + w̃,2 )],2 +[w̃(ξ2 + w̃,3 )],3 } dA

=
∮

C

w̃[(−ξ3 + w̃,2 )n2 + (ξ2 + w̃,3 )n3)] dC .

(A.17)

Hence considering boundary condition (4)2 and again application of Green’s
formula leads to

∮

C

w̃[(−ξ3 + w̃,2 )n2 + (ξ2 + w̃,3 )n3)] dC =
∮

C

w̃ (−m3n2 + m2n3) dC

=
∫

A

[−m3w̃,2 +m2w̃,3 ] dA

(A.18)
Furthermore using (A.11) – (A.14) one obtains

∫

A

[−m3w̃,2 +m2w̃,3 ] dA =
∫

A

[−m3(ξ3 − m3) − m2(ξ2 − m2)] dA (A.19)

Thus the final version of (A.15) is obtained using (A.16), (A.19) and the
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definition of the Saint–Venant torsion modulus (46)3

∫

A

(ξ̃2
2 + ξ̃2

3) dA =
∫

A

[(ξ2 − m2)
2 + (ξ3 − m3)

2 + w̃,3 (ξ2 − m2) − w̃,2 (ξ3 − m3)] dA

+
∫

A

(m2
2 + m2

3) dA = IT + A(m2
2 + m2

3) .

(A.20)
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