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Abstract

A numerical model for the nonlinear analysis of laminates is presented. The developed
element is based on piecewise polynomial interpolation in thickness direction. Although
the total number of degrees of freedom is comparable to a discretization with 3–D brick
elements this approach provides several advantages, e.g. a simple mesh generation due
to a 2D–type data structure and a better bending behaviour. The developed isoparamet-
ric quadrilateral finite element allows to predict the complete stress state. Furthermore a
transition element is presented which is capable to couple the developed element with 5–
parameter shell elements. Several linear and nonlinear examples are presented to illustrate
the performance of the developed numerical model.
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1 Introduction

The application of composite materials in shell–like light weight structures demands new
design requirements. These shells usually consist of thin laminates which are treated
as a stack of bonded plies. Due to the varying fiber orientations and the anisotropy of
the material each ply tries to behave independently of the other plies. This leads to a
complicated three–dimensional stress state e.g. along free edges, cutouts, rivet holes etc..
The stress state, especially tension stresses in thickness direction and shear stresses, may
lead to delamination between adjacent layers. Since there are many papers on the topic of
composite shells, only a few representative results are mentioned in the following. Detailed
surveys are given in refs. [1] , [2].

Shear deformation models are variants of the Reissner–Mindlin theory which was origi-
nally proposed for homogeneous isotropic plates. A generalization of the shear–deformable
theory for composite materials leads to the classical laminate theory where coupling of
bending and stretching occurs. These models do not account for continuity of the shear
stress components acting on laminar interfaces. The performance of this first–order shear–
deformation model depends on the factors used for adjusting the transverse shear stiffness,
see e.g. refs. [3] , [4] .

Cubic polynomials in thickness direction are used to interpolate the displacements in
third–order shear–deformation models [5]. In general these models do not fulfill continuity
of the stresses across the interfaces. Only with special Hermite cubic shape functions
continuity of the interlaminar shear stresses can be achieved [6].

In discrete–layer models the shape of the displacement field through the thickness is
interpolated by piecewise linear functions (multi–director theory). The number of field
equations and edge boundary conditions depends on the number of layers. Each layer is
considered as a homogeneous shell with constant material properties.

For all these models closed form solutions are available only in special cases with simple
geometry and boundary conditions, see e.g. ref. [7]. In many cases the finite element
method is used to compute numerical results. Finite elements for linear composite plate
and shells have been described in many papers, see e.g. refs. [8] - [17], and with nonlinear
applications e.g. in [18] - [31].

The objective of this paper is to develop a geometrical nonlinear 2–D, displacement–based
finite element model which is capable to predict edge stresses in laminates emanating
from the anisotropy of the material. We apply piecewise polynomial functions up to third
order to interpolate the displacements in thickness direction. This shape is independent
of the FE–interpolation in the shell middle surface, see ref. [17]. Within a nonlinear
formulation the theory accounts for all six strain components. Each layer has constant
material properties and is treated as a homogeneous shell.

The second part is concerned with the finite element formulation for quadrilaterals. The
initial configuration is described using an arbitrary reference surface and associated normal
vector. Within the so–called isoparametric approach we apply bilinear shape functions to
interpolate the reference surface and the displacement vector at the layer points. We
present the discrete weak form of equilibrium and derive analytically the tangent stiffness
matrix.
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Large portions of composite structures are characterized by plane stress state and straight
director vector in the current configuration. These are typical assumptions for shell ele-
ments based on standard shell theories. We develop a transition element which is capable
to connect the generalized finite element with standard shell elements with five degrees
of freedom (three displacements and two rotations). Composites behave very sensitive to
any constraints within the transition area. Numerical investigations show that especially
for a membrane stress state constraints concerning the strain in thickness direction lead
to local spurious effects. Thus the transition conditions have to be chosen in a proper way
to obtain reasonable results. We present linear and nonlinear examples which show the
effectivity of the proposed model.

2 Kinematic, Weak Form and Material Law

The variational formulation of the boundary value problem is presented. Within a ma-
terial formulation the kinematic of a laminate is discussed. Furthermore the static field
equations, the associated weak formulation and the orthotropic material law are given.

In the definitions and relations that follow Greek subscripts and superscripts refer to
covariant and contravariant surface tensor components, respectively. The summation con-
vention applies to each repeated pair of indices. Commas are used to denote partial differ-
entiation based on the geometry of the arbitrary reference surface Ω. The shell consists of
N numerical layers with thickness ih. The numerical layers are not necessarily identical
with the n actual layers of thickness jh. Thus each actual layer can be subdivided into
several sublayers or viceversa several layers can be summarized to an equivalent numerical
layer (see Fig. 1).

The position vector X0 is labeled with convective coordinates Θα. An orthonormal basis
system tk(Θ

α) is attached to this surface where t3 is a normal vector and Θ3 the coordinate
in thickness direction. The transformations between the different base systems are given
by

tk(Θ
α) = R0(Θ

α) ek (1)

where R0 is a proper orthogonal tensor. This leads to a convenient representation of the
orthotropic material law.

The kinematic of the shell is based on the assumption of a multiplicative decomposition of
the displacement field in shell space with independent functions for the shape in thickness
direction and functions defined on the reference surface of the shell.

Then the position vectors of the reference and the current configuration are given by (see
Fig. 2)

X(Θα, Θ3) = X0(Θ
α) + Θ3 t3(Θ

α) −h

2
≤ Θ3 ≤ h

2

x(Θα, Θ3) = X(Θα, Θ3) + u(Θα, Θ3)

(2)
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where for layer i the displacement vector is interpolated through the thickness

u(Θα, Θ3) =
m∑

l=1

iφl(Θ
3) iūl(Θ

α) = iΦ(Θ3) iū(Θα)

iū(Θα) = [iū1,
iū2, ... , iūm]T (2 ≤ m ≤ 4) .

(3)

The shape functions iφl are written in a matrix with hierarchical shape functions

iΦ = [iφ11, iφ21, ... , iφm1]

iφ1(
iζ) =

1

2
(1 − iζ) iζ = 2 Θ3/ih

iφ2(
iζ) =

1

2
(1 + iζ)

iφ3(
iζ) = 1 − iζ2

iφ4(
iζ) = (1 − iζ2)iζ

(4)

Thus up to third order polynomial functions are used to describe the shape of the deformed
cross sections (see Fig. 3). For example a layerwise linear shape of the deformed cross
section through the thickness is obtained using iφ1 and iφ2.

N

N-1

i

2

1

Reference Surface

hi h

Θt
t Θ α

α

3
3

ζi

Figure 1: Subdivision of the laminate into N numerical layers, notation

The governing static field equations and boundary conditions of the three–dimensional
theory are

Div (FS) + ρ0b = 0

S = ST
in B

(FS)n0 = p̂ on ∂Bσ

u = û on ∂Bu

(5)

Here S and F are the Second Piola–Kirchhoff stress tensor S = SklGk ⊗ Gl and defor-
mation gradient F = F k

mGk ⊗Gm, respectively. In a standard manner the covariant base
vectors are introduced as Gi = ∂X/∂Θi, whereas the dual base vectors Gi are defined by
Gi ·Gj = δj

i . In (5) n0 denotes the outward normal vector along the top and bottom sur-
face ∂Bσ with applied loads p̂ = p̂k ek. The body forces ρ0b are neglected in the following
equations.
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Figure 2: Initial and current configuration of a laminated shell
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Figure 3: Hierarchical shape functions in thickness direction for numerical layer i

The associated weak formulation in a material description is obtained by weighting the
field equations with test functions δu which yields after some algebraic manipulations

g(u, δu) =
∫

(Ω)

[
∫

(Θ3)

Skl δEkl JdΘ3] dΘ2dΘ1 −
∫

(Ωσ)

p̂k δuk dΩσ = 0 . (6)

with J = (X,1 ×X,2 ) · X,3. Note that integration in (6) has to be performed considering
the different material parameters or fiber angles through the thickness. The components
of the Green-Lagrangian strain tensor E = Ekl G

k⊗Gl and the associated variation yields

Ekl = 1
2
(x,k ·x,l − X,k ·X,l )

δEkl = 1
2
(δx,k ·x,l + δx,l ·x,k ) .

(7)

Furthermore we need to express the linearization of the weak form. With conservative
external loads one obtains

Dg(u, δu) · Δu =
∫

(Ω)

[
∫

(Θ3)

(δEklC
klmnΔEmn + SklΔδEkl) JdΘ3] dΩ (8)

with the linearized virtual strains

ΔδEkl = 1
2
(δx,k ·Δx,l +δx,l ·Δx,k ) . (9)

Besides the kinematical relations and the equilibrium equations we have to formulate a
constitutive law to determine the deformations of the shell. Each ply is considered as a
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homogeneous orthotropic medium, where the axes of orthotropy coincide with the material
principal axes.

Hence the stresses of the actual layer j are given with the orthotropic material law

jSkl = jCklmn jEmn . (10)

The components expressed in matrix notation refer to an orthonormal coordinate system
which is a local fiber oriented basis. The material matrix has to be transformed to a global
fiber independent basis system, for more details see e.g. [30]

jS = jC jE
jS = [S11 , S22 , S33 , S12 , S13 , S23]

T

jE = [E11 , E22 , E33 , 2E12 , 2E13 , 2E23]
T

(11)

with the constitutive matrix

jC =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q11 Q12 Q13 Q14 0 0
Q21 Q22 Q23 Q24 0 0
Q31 Q32 Q33 Q34 0 0
Q41 Q42 Q43 Q44 0 0
0 0 0 0 Q55 Q56

0 0 0 0 Q65 Q66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12)

The components Qij are functions of the material parameters E1, E2, ν, G12, G23 of layer j
and of the fiber angle jϕ. The moduli E1 and E2 are the stiffness ratios parallel and per-
pendicular to the fiber direction, respectively. The fiber angle is defined in our calculations
as angle between fiber direction and basis vector t1.

We restrict ourselves to small strains thus transformations between different stress tensors
are neglected and material parameters of the linear theory can be used.

3 Finite Element Formulation

In this section the finite element formulation for quadrilaterals is developed. The initial
geometry is approximated using standard bilinear shape functions. Due to the above
presented variational formulation only C0–continuity for the displacements at the element
boundaries is necessary. Furthermore the transverse shear strains are interpolated in such
a way that shear locking can be avoided. In the following we denote our shell–formulation
as ’3D–shell’ whereas we call an element based on a 5–parameter theory a ’2D–shell’.

The shell surface is approximated by a finite element discretization of the form

Ωh = A
e=1

nelm

Ωe , (13)

where nelm is the number of finite elements in the discretization, and Ωe denotes a typical
element.
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Within an element Ωe, the position vector X of the reference configuration is interpolated
by

X =
4∑

K=1

NK(ξ, η)XK

XK = X0K + Θ3 t3K

(14)

Here Θ3 takes the value of integration points in thickness direction. The functions NK(ξ, η)
are the standard bilinear element shape functions. The normal vectors t3K are computed
within the mesh generation and have to be unique at the nodes.

Using (14) we compute an orthonormal basis system at the integration points.

t1 = G1/‖G1‖
t3 = (G1 × G2)/‖G1 × G2‖
t2 = t3 × t1

(15)

where the convected system is obtained by partial derivatives

G1 = ∂X/∂ξ,

G2 = ∂X/∂η .
(16)

The advantage of the orthogonal system (15) compared with a convected system is that
no further transformations of the material law are necessary.

Then the Jacobian transformation matrix follows from

J =

⎡⎣ G1 · t1 G1 · t2

G2 · t1 G2 · t2

⎤⎦ . (17)

This matrix is used to obtain the shape function derivatives with respect to the local
orthonormal coordinates.

Furthermore the displacement vector u = ulel is approximated using (3)

u =
4∑

K=1

NK(ξ, η)iΦvK . (18)

Here the nodal displacement vector vK consists of ndf = 3(N +1)+3N(m−2) unknowns.

To avoid shear locking the transverse shear strains γγγ = Eξ3G
1 +Eη3G

2 are independently
interpolated (see ref. [40]):

2Eξ3 = 1
2
[(1 − η)γB + (1 + η)γD]

2Eη3 = 1
2
[(1 − ξ)γA + (1 + ξ)γC ] .

(19)

The shear strains γM at the midside nodes M = A,B,C,D of a four–node element (see
Fig. 4) are deduced with (7)1 for certain coordinates Θ3

γα = x,α ·x,3 −X,α ·X,3 . (20)
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Figure 4: Quadrilateral shell element

Inserting the preliminary interpolations into the virtual work expression the FE–equations
of the weak form are obtained

ge(v, δv) =
nel∑

K=1

δvT
K

⎧⎪⎨⎪⎩
∫

(Ωe)

[
n∑

j=1

∫
(Θ3)

BT
K SJ

jh

2
d jζ] dΩe −

2∑
l=1

∫
(Ωeσ)

NKp̂lJ̄l dΩeσ

⎫⎪⎬⎪⎭ = 0 .

(21)
Here J̄l denotes the surface element of the top and bottom surface Ωeσ with applied loads
p̂l. The stress vector S is obtained via the constitutive relation and matrix BK is specified
in detail in appendix A1.

The solution of the nonlinear algebraic equation (21) is iteratively computed by New-
ton’s method. For this purpose the tangent stiffness is derived by applying the directional
derivative to g

Dge(v, δv)Δv =
nel∑

K=1

nel∑
L=1

δvT
K Ke

TKL ΔvL

Ke
TKL =

∫
(Ωe)

n∑
j=1

∫
(Θ3)

(BT
K

jCBL + jGKL) J
jh

2
djζ dΩe

(22)

Here Ke
TKL denotes the tangential stiffness matrix for nodes K and L of the element e.

The matrix jGKL follows from the discretization of the linearized virtual strains (9) and
is given in appendix A2.

The derivation of the exact linearization is essential for the solution process of the non-
linear FE–equations. The vectors and matrices (21), (22) are integrated using Gauss
quadrature with a 2 × 2 integration within the shell surface. For each layer the numeri-
cal integration through the thickness depends on the chosen polynomial degree, e.g. two
integration points for linear and three and four for quadratic and cubic interpolation,
respectively.
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4 Transition Element

Usually large portions of composite structures are characterized by plane stress state and
straight director vector in the current configuration. These are typical assumptions for
shell elements based on standard shell theories. Coupling of 2D–shell elements with 3D–
brick elements has been considered for linear elastic isotropic material behaviour e.g. in
Stein, Rust, Ohnimus [37]. In this section we present a transition element which is capable
to connect the developed finite element with standard shell elements with five degrees of
freedom (three displacements and two rotational degrees of freedom).

As constraints at the intersection line we introduce two conditions:

(i) The cross section of the current configuration is a plane (no warping)
(ii) Layerwise constant thickness stretches

(plane stress state is approximately fulfilled within the 3d–weak form) .

Numerical investigations show that for laminated plies the assumption of inextensibility
in thickness direction leads to a completely wrong stress distribution in the vicinity of the
transition edges. Furthermore the computations show that the assumption of constant
strain E33 through the total thickness is not sufficient. Therefore we assume layerwise
constant strains in thickness direction.

Within a transition element the interpolation of the displacement vector has to be modified
according to eq. (18)

δu =
4∑

K=1

NK(ξ, η)Φ̃K δvK . (23)

The matrix of the shape functions Φ̃K describes the interpolation in thickness direction
where at the transition nodes K

Φ̃K = [φ11, φ21, · · · , φ21]

φ1 = 1

φ2 = Θ3 .

(24)

The vector of virtual nodal displacements at the transition nodes reads

δvK = [δu0, δ
1d, · · · , δNd]K (25)

Here u0 and id denote the displacement vector of the reference surface and director vector
of layer i, respectively.

We apply a multiplicative split of the director vector idK in a rotation and stretch in
thickness direction iλ for each numerical layer i (1 ≤ i ≤ N).

idK = iλK a3K ‖a3K‖ = 1 (26)

The variation of idK is required and yields with logarithmic stretches μ = ln λ and two
local rotations βα

δidK = δiλK a3K + iλK δa3K

δa3K = δβ1Ka1K + δβ2Ka2K

δiλK = iλK δiμK .

(27)
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The associated matrix representation yields

δidK = iλK TK δβββK + iλK a3K δiμK (28)

where
δβββK = [δβ1, δβ2]

T
K

TK = [a1, a2]K .
(29)

We emphasize that the decomposition is only performed at the transition nodes. The
rotation matrix ΛΛΛK = [a1, a2, a3]K is obtained by a multiplicative update procedure within
the Newton iteration process as described in ref. [36]. In case of moderate rotations the
update drops out and the base vectors of the initial configuration aiK = tiK are used in
(28). We apply the same rotation matrix ΛΛΛK for all layers, which coincides with assumption
(i).

Inserting transformation (28) into (23) one obtains modified functions iΦ̃.

δu =
4∑

K=1

NK(ξ, η)iΦ̃K δvK (30)

where
iΦ̃K = [Φ̃AK , Φ̃BK ]

iΦ̃AK = [φ1111, φ2
iλTK ]

iΦ̃BK = [φ2
iλa3K ]

δvK = [δu0, δβββ, · · · , δ iμ, · · ·]K .

(31)

When computing the matrices BK which are defined in appendix A1 one has to consider
the following cases:

BAK =

⎧⎨⎩ BK(iΦ̃AK) if K is a transition node

BK(iΦ) if K is a regular node

BBK = BK(iΦ̃BK) if K is a transition node .

(32)

which leads to
BL = [BL1,BL2,BL3,BL4] (L = A,B) . (33)

Then the FE–equation of element e yields⎡⎣ KAA KAB

KBA KBB

⎤⎦ ⎡⎣ ΔvA

ΔvB

⎤⎦ =

⎡⎣ RA

RB

⎤⎦ (34)
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with

KLM =
∫

(Ωe)

n∑
j=1

∫
(Θ3)

(BT
L

jCBM + jGLM) J
jh

2
djζ dΩe

RL = PL −
∫

(Ωe)

n∑
j=1

∫
(Θ3)

BT
L S J

jh

2
djζ dΩe

ΔvL = [Δv1L, Δv2L, Δv3L, Δv4L]

ΔvAK =

⎧⎨⎩ [Δu0, Δβββ]K if K is a transition node

ΔvK if K is a regular node

ΔvBK = [Δ1μ, · · · , Δiμ, · · · , ΔNμ]K if K is a transition node

(35)

where L,M = A,B and jGLM = jG(Φ̃L, Φ̃M). The load vector PL has to be computed
as in a standard element considering (21).

The number of unknowns at the transition nodes is now ndf = 5+N . In the following the
N nodal unknowns which are strains of N numerical layers are condensed out. Provided
KBB is invertible the condensation leads to modified stiffness and right hand side

K̃AA = KAA − KABK−1
BBKBA

R̃A = RA − KABK−1
BBRB .

(36)

Within the Newton iteration the update of the condensed vector vB yields

vl+1
B = vl

B + ΔvB . (37)

Hence the vector vl
B has to be stored for each transition element.

Remark:

The condensation of vB in (34) is not necessary, however it keeps the number of unknowns
at the transition nodes with ndf = 5 the same as for the nodes within the 2D–domain.
Thus the input data for the mesh generation becomes simple.

5 Numerical Examples

The element scheme has been implemented in an enhanced version of the program FEAP
documented in ref. [42]. In this section we present three numerical examples to show
the effectiveness of the finite element formulation presented above. The first example
demonstrates the application of our formulation to a linear problem with the typical
edge effect for laminated structures. Within the second and third example, a composite
leaf spring and a plate with delamination, different finite elements are used in nonlinear
applications.
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Figure 5: Rectangular plate under uniform uniaxial extension
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Figure 6: Comparison of the multi–director element with an 8–node brick element for the
rectangular plate

5.1 Rectangular Plate under Uniform Uniaxial Extension

This well–known problem, presented in Fig. 5, is examined as first example, see e.g.
ref. [35]. The laminate considered in this study consists of four identical plies with
[0◦/90◦/90◦/0◦] stacking sequence where 0◦ refers to the x–direction. The width to height
ratio is b/h = 20, where h = 1 represents one layer thickness and b half–width of the
plate. The elastic constants with respect to principal material axes are:

E1 = 137900MPa, E2 = 14480MPa,

ν = 0.25 , G12 = G23 = 5860MPa .
(38)

The strain state is constant in x–direction with εxx = 10−2, thus one element is sufficient
in this direction. Considering symmetry the upper two layers and half the system in y–
direction is modeled with 100 elements. This example shows the typical edge effect for
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Coupling with E = 0
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Figure 7: Stress distribution Szz(y, z = 0.1) for inappropriate transition conditions

3D shell solution
2D - 3D shell solution

coordinate y [ mm ]

2D shell 3D shell

Figure 8: Shape of the normal stresses Szz(y, z = 0.1)[MPa]

laminates. The stresses Szz and Syz are computed and compared with results obtained
with 8–node brick elements. According to Fig. 6 there is good aggreement between both
solutions. The developed FE–formulation is able to represent the steep ascent of the
stress field along the free edges. Furthermore the plot shows that approximately plane
stress state is given for y < 10. Thus in the next computation we discretize only the
domain 10 ≤ y ≤ 20 with 3d–shell elements and the remaining part with 5–parameter
shell elements. Fig. 7 shows the results for two inappropriate transition conditions:
E33(y = 10, z) = 0, E33(y = 10, z) = constant. This example shows clearly that especially
the assumption of inextensibility yields a completely wrong stress field in the vicinity of
the transition elements. The results for the developed transition element with layerwise
constant thickness stretches are depicted in Fig. 8 (Szz) and Fig. 9 (Syz). As can be seen
there is good agreement between the 2D/3D and the 3D shell solution.
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The shapes of the normal stress Szz(y = 19.95) through the thickness for two different
discretizations are depicted in Fig. 10. A comparison for 20 numerical layers with linear
interpolation and 4 layers with cubic interpolation is given. The zero stress condition at
the top and bottom surfaces of the laminate is approximately fulfilled by the weak form
of equilibrium.

coordinate y [mm]

3D shell solution

2D - 3D shell solution

2D shell 3D shell

Figure 9: Shape of the shear stresses Syz(y, z = 1.1)[MPa]

20 layers linear interpolation

4 layers cubic interpolation

Szz (y = 19.95 mm)

z
/

h

Figure 10: Distribution of normal stresses Szz(y = 19.95, z)[MPa] through the thickness

5.2 Composite Leaf Spring

The edge effect for a bending problem is investigated with the leaf spring shown in Fig.
11. The geometry of the spring is described by the parabola z = 0.1 x2. Additional data
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Figure 11: Leaf spring, geometry and loading
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3D-shell

Figure 12: Load factor versus tip deflection of the leaf spring

are the total thickness with h = 2, a stacking sequence [0◦/90◦/90◦/0◦], the length l = 100
and half–width b = 20. Material data are given in eq. (38). Due to the symmetry half
of the system is discretized by 225 4–node elements. Each layer is subdivided into three
sublayers with linear interpolation of the displacements in thickness direction. The mesh is
refined along the free edge to catch the edge effects. The load deflection curve is computed
up to a maximum load of qz = −6 · 10−2 MPa for three different types of discretization:
5–parameter shell for the whole mesh, partly 3D–shell according to Fig. 11 and 3D–shell
for the whole mesh. Fig. 12 shows that the results agree with each other. The computing
times for a linear solution and different types of discretization on an IBM RS 6000–32H
are given in Table 1. A considerable save of computing time is possible when using the
developed coupling method. Furthermore a plot of the shear stresses S23(Θ3 = −0.417)
shows the typical edge effect, see Fig. 13.

Next the thickness of the leaf spring is reduced to h = 0.2 to demonstrate the shear
locking effect. The other geometrical and material data are unchanged. The results for
a load qz = −6 · 10−5 MPa are depicted in Fig. 14. Within a linear analysis the tip
deflections of the spring are computed using the following discretizations: 3D–shell for
the whole mesh, 2D–shell coupled with 3D–shell and 8–node brick elements based on the
displacement method. The plot shows that the 8–node brick element suffers from severe

15



Discretization CPU time [sec]
2D–shell 4.2
2D–3D–shell 214
3D–shell 445

Table 1: CPU–time for leaf spring

shear locking whereas the layered shell formulation yields already converged solutions for
very course meshes. Especially this example shows the necessity of the developed layered
shell formulation. An element based on a first–order shear deformation theory is not able
to represent the correct shape of the edge stresses. On the other hand a discretization
with brick elements leads especially for bending problems not to reliable results.

Figure 13: Contours of the shear stresses S23(Θ3 = −0.417)

Elements in 1-direction

3D shell
2D - 3D shell
8 - node brick

Figure 14: Tip deflection of the thin leaf spring for different elements
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5.3 Stability Analysis of a Cracked Plate

h

13 1310

λF
delamination

S

S

B
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w

[mm]

36 mm

24
m

m

h = 1.92 mm

F = 30 N/mm

R = 10 mm

x

y
α

Figure 15: Cracked plate with a circular delamination zone

Within the last example the postcritical behaviour of a rectangular plate with a given
circular delamination zone under pressure load is investigated, see Fig. 15. For this exam-
ple results with nonlinear DKT–shell elements are published recently by Cochelin et.al.
[33]. The plate consists of 16 layers with a [0◦/0◦/ + 45◦/0◦/0◦/ − 45◦/0◦/90◦]s stacking
sequence. The artificial delamination zone is assumed between layer 14 and 15. Due to the
symmetry only one quarter of the system is discretized with 704 4–node shell elements
where we discretize the delamination zone with elements for the lower and upper part.
The symmetry conditions are applied at x = 0 and y = 0 and uz = 0 at the remaining
boundaries. The displacements uy(y = 18 mm) are constant which means that the load
is applied via a rigid plate. Geometrical and material data are

l = 36 mm
b = 24 mm
t = 0.12 mm
h = 1.92 mm

E1 = 135000 MPa
E2 = 8500 MPa
ν = 0.317

G12 = 5150 MPa
G23 = 5150 MPa .

(39)

In a first step we use a classical shear elastic shallow shell element for composite material,
see e.g. a modified element of Wagner et.al. [38], to verify the results of Cochelin et.al. [33].

17



λ-w (u=0)
λ-w (u=0)
λ-w (Cochelin et.al.)

c
c

c

B

Figure 16: Load deflection curves for point A

The shallow shell element and the nonlinear version of the DKT–element, see Cochelin
et.al. [34], are characterized by the same type of nonlinearity. The load factor λ versus
the transverse displacement of point A in the center is depicted in Fig. 16 for two types of
boundary conditions. The results for ux(x = 12) �= 0 are nearly similar to those of Cochelin
et.al. [33] whereas we get a a different solution for boundary condition ux(x = 12) = 0.

Our calculations base on the arc-length-method in combination with the use of so called
extended systems for the stability analysis. We start with one arc-length step to find
a solution point near the first stability point. This point - a bifurcation point - can be
found directly within a given accuracy using the mentioned extended system at a load
factor λ = 14.98. The associated lowest eigenvector is characterized by local buckling
of the delaminated layers 15 and 16. A switch to the secondary path is possible by a
perturbation of the primary solution with the first eigenvector. A detailed description of
the used path following strategies in combination with extended systems can be found e.g.
in Wagner, Wriggers [39] and Wriggers, Wagner, Miehe [41]. We get the ideal solution path
in the prebuckling– and initial postbuckling range which is in contrast to Cochelin et.al.
where imperfections are used to avoid the bifurcation analysis. The secondary equilibrium
path is a stable solution path. Due to the buckled layers 15 and 16 the plate is now loaded
excentrically which can be seen as an imperfection.

In Fig. 17 we present curves for the loadfactor λ versus the transverse displacement of
points A and B in the center. Furthermore we make a calculation without a delamination
zone. For this purpose we tie the nodes of top and bottom shell. The buckling load
factor is now λc = 50.93. This point (B2) and the associated secondary path are depicted
in Fig. 17 too. It can be seen that the result with the delamination zone approaches
this solution in the postcritical range. A simple analytical calculation for the buckling
load of an orthotropic (here only approximately fulfilled) simply supported plate under
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compression load leads to a critical load factor

λcr =
2 π2

F b2
(
√

D11 + D22 + (D12 + 2D33) ) = 47.6 (40)

with b = 24 mm, F = 30 N/m and Dii the bending stiffness in directions 1,2 and 3=12,
see e.g. Calcote [32].

λ - w
λ - w
λ - w (non-cracked

system)

A
B

B2

B1

Figure 17: Load deflection curves for points A and B

In a second step we use a shear elastic shell element for composite materials including
finite rotations, see e.g. Wagner, Gruttmann [40]. Here we get different results for the load
deflection curves. Especially the bifurcation is now at λc = 20.79 which is about 39 %
higher than with the shallow shell element. This is explained with the different types of
shell formulation. The finite rotation element considers all nonlinear terms in the strain–
displacement relations whereas the shallow shell element bases on a simplified moderate
rotation theory with nonlinear terms only in w,x and w,y. Without delamination we have a
buckling load of λ = 50.0 which is about 1.8 % lower than with the shallow shell element.
The complete load–deflection curve is shown in Fig. 18 together with the previous results
from Fig. 16.

In a third step we test the above presented 3D–shell and the transition element. A ring of
3D–shell elements around the crack tip as depicted in Fig. 19 is used. This is to describe
the three–dimensional stress state in the vicinity of the crack tip. The load–deflection
relation agrees with the solution of the finite rotation element with 5 degrees of freedom as
depicted in Fig. 18. A contour plot of stresses Szz is given in Fig. 20. Further investigations
e.g. the calculation of energy release rates as criteria for crack propagation could base on
these results. Finally the deformed system at a load factor λ = 60 is plotted in Fig. 21.
Global and local buckling deformations can be seen clearly.
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λ-w shallow shell
λ-w general shell
λ-w Cochelin et.al.

A
A

A

Figure 18: Load deflection curves for point A, comparison of a shallow shell element with
a general shell element

2D - shell elements

2D - shell elements for the lower and upper part

3D - shell elements

delamination front

Figure 19: FE–mesh with distribution of 2D–shell and 3D–shell elements

20



Figure 20: Contour plot of stresses Szz

Figure 21: Deformed delaminated plate at λ = 60
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6 Concluding Remarks

In this paper a geometrical nonlinear theory for the numerical analysis of composite struc-
tures is described. The kinematic is based on the assumption of independent interpolation
functions for the displacement field through the thickness. The finite element formulation
for quadrilaterals is based on the isoparametric approach. Initial geometry and displace-
ment field are interpolated using bilinear functions. The transverse shear strains are in-
dependently approximated to avoid shear locking. Exact linearization of the variational
equations yields tangential stiffness matrices used in the iterative solution process.

The developed model is characterized by the following features which provides several
advantages compared to a FE–discretization with brick elements. The advantages are: 2–D
data structure, simplified mesh generation, faster stiffness computation, better description
of bending behaviour and a simple coupling of the developed element with standard shell
elements.

The model is capable to describe edge effects emanating from the anisotropic material
behaviour which are responsible for delamination phenomena. The results of different
models are compared and show good agreement.

7 Appendix

A1 FE–matrices of the virtual strains

In this appendix we present the finite element matrices of the variational equations. We
need to specify the variation of the Green–Lagrangian strain tensor δE = δFTF + FT δF.
Considering interpolation (18) the discrete form of the virtual deformation gradient leads
to

δF = δx,α ⊗eα + δx,3 ⊗e3

δx,α =
4∑

K=1

NK ,α Φ δvK δx,3 =
4∑

K=1

NKΦ,3 δvK

(41)

This is inserted into the expression for the virtual strains (7)2 δE =
[δE11 , δE22 , δE33 , 2δE12 , 2δE13 , 2δE23]

T

δE =
nel∑

K=1

BKδvK BK =

⎡⎢⎣ BM

J−1BS

⎤⎥⎦ (42)

where

BM =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

NK ,1 xT ,1 Φ

NK ,2 xT ,2 Φ

NKxT ,3 Φ,3

(NK ,1 xT ,2 +NK ,2 xT ,1 )Φ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
BS =

⎡⎢⎣ NK ,ξ (xT
M ,3 Φ + fMxT

M ,ξ Φ,3 )

NK ,η (xT
L,3 Φ + fLxT

L,η Φ,3 )

⎤⎥⎦

(43)
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The variation of the assumed transverse shear interpolation (19) leads after some algebraic
manipulations to matrix BS. The factors fM and fL with subscripts M,L are given in
Table 2. Furthermore transformation of the shear strains into the orthogonal basis system
is considered in (42).

K 1 2 3 4
M B B D D
L A C C A
fM -1 1 1 -1
fL -1 -1 1 1

Table 2: Nodes M and L for transverse shear interpolation

A2 Geometrical part of the tangential stiffness matrix

Numerical effectivity of the iterative solution procedure relies essentially on the correct
linearization of the weak form of equilibrium. This leads to a material and a geometrical
part within the tangential stiffness matrix. The geometrical part is deduced from (9)
where we omit the layer index j

GKL = N̂KLΦTΦ + S33NKNLΦT ,3 Φ,3 +Q̂KLΦT ,3 Φ + Q̂LKΦTΦ,3
(44)

with

N̂KL = 1
2
Sαβ(NK ,α NL,β +NK ,β NL,α )

[Q̂KL] =
1

8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Sξ3(1 − η)
−Sη3(1 − ξ)

−Sξ3(1 − η) 0 −Sη3(1 − ξ)

Sξ3(1 − η)
Sξ3(1 − η)

−Sη3(1 + ξ)
−Sη3(1 + ξ) 0

0 Sη3(1 + ξ)
Sξ3(1 + η)

+Sη3(1 + ξ)
Sξ3(1 + η)

Sη3(1 − ξ) 0 −Sξ3(1 + η)
−Sξ3(1 + η)
+Sη3(1 − ξ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Q̂LK = −Q̂KL .

(45)

Here it is more convenient to express the transverse shear part in the skew basis system.
The transformed shear stresses are[

Sξ3

Sη3

]
= J−1

[
S13

S23

]
. (46)
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26. Başar Y., Ding Y., Schultz R., Refined Shear–Deformation Models for Composite
Laminates with Finite Rotations, Int. J. Solids Struct. 30 (1993) 2611–2638.
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