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Abstract

This paper presents a finite element method to simulate growing delaminations

in composite structures. The delamination process, using an inelastic material

law with softening, takes place within an interface layer having a small, but

non–vanishing thickness. A stress criterion is used to detect the critical points.

To prevent mesh dependent solutions a regularization technique is applied. The

artificial viscosity leads to corresponding stiffness matrices which guarantee sta-

ble equilibrium iterations. The essential material parameter which describes the

delamination process is the critical energy release rate. The finite element calcula-

tions document the robustness and effectivity of the developed model. Extensive

parameter studies are performed to show the influence of the introduced geomet-

rical and material quantities.

Keywords: Composite laminates, delamination, viscoplasticity, finite elements
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1 Introduction

One of the most dangerous failure modes in composite laminates is delamina-

tion, see Fig. 1. The loss of strength and stiffness may reduce the lifetime in a

significant way. To utilize the full potential of composites it is necessary to ana-

lyze initiation and growth of delamination which may be a basis of appropriate

construction measures.

200 m�

Figure 1: Delamination problem: finite element mesh and experiment

Due to the complexity of the underlying mathematical model, usually numerical

procedures are applied to compute increasing delaminations. The so–called first–

ply failure analysis yields the location where damage starts, see e.g. Lee [1].

Several authors use stress–based criteria to predict different failure modes, e.g.

Hashin [2]. If the criterion is not fulfilled stiffness parameters are reduced or

set to zero. The procedure may not work if the stress field is singular. Another

disadvantage is a lack of robustness within the equilibrium iterations. This holds

especially for geometrical nonlinear calculations. Numerical investigations show

that mesh refinement not necessarily leads to a converged solution.

Other authors use a fracture mechanics approach. When the energy related to

the newly opened crack-surface exceeds a critical value, the crack extends. In

so-called virtual crack-extension or crack-closure methods the energy release rate

is calculated using the nodal forces and displacements within the finite element

method, Davidson [3], Wang et al. [4] and Teßmer [5]. A considerable number

of iterations may be necessary until a configuration is found where equilibrium

and delamination criterion are fulfilled.

In some papers interface elements with double nodes are used to map the geomet-

ric discontinuities arising within the delamination process. Schellekens and de
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Borst [6] developed plane strain elements and associated interface elements with

cubic interpolation functions. Crisfield et al. [7] modified the concept along with

eight–node quadrilateral plane strain elements. In their approach the constitutive

equations are formulated directly in terms of crack opening displacements. Inter-

laminar strains cannot be computed, since the thickness of the interface elements

vanishes.

The goal of this paper is to present an effective finite element tool for the numer-

ical analysis of delaminations in layered composites. The essential features and

novel aspects are summarized as follows.

To obtain the complete three–dimensional stress state we discretize the lami-

nated composite structures with eight–noded hexahedral elements, documented

in Klinkel et al. [8]. Due to special interpolation techniques based on mixed

variational principles the elements are able to predict the stress state even for

very thin structures. In large scale problems the use of 3D elements may not

be practical. To reduce the numerical effort coupled 2D/3D computations have

been discussed in Wagner and Gruttmann [9]. For this purpose a special inter-

face element has been developed, which allows the coupling of shell elements with

hexahedral elements.

Delamination takes place in interface layers with small but not vanishing thick-

ness. The interlaminar stresses are determined using an inelastic material law

with softening. The slope of the softening curve is determined by the critical

energy release rate, the thickness of the interface layer and the tensile strength of

the laminate in thickness direction. Complete delamination occurs if the newly

opened surface is free of stresses. To avoid mesh dependent solutions a regular-

ization technique is applied.

The paper is arranged as follows: We start with the description of the inter-

face element and the delamination model. Hence, the formulations of the rate

independent plasticity model and the regularization concept are given. Four ex-

amples are investigated, where extensive parameter studies are performed to show

the influence of the introduced geometrical and material quantities. For the so–

called double cantilever beam good agreement with experimental results could be

shown. Furthermore a plate strip and a plate with given delamination zone are

investigated. Finally, propagating delaminations within a carbon–fibre reinforced

composite plate are computed and compared with experimental results.
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2 Delamination model

Delamination of layered composites usually occurs together with damage within

the plys. However, the complicated interaction between the different failure

modes is not considered in the present paper. To account for the three–

dimensional stress state, which typically occurs in composite structures, the dis-

cretization is performed using hexahedral elements. The standard isoparametric

eight–node element with trilinear shape functions is improved to reduce the well–

known locking effects when discretizing thin structures. Applying an assumed

strain method (ANS), the transverse shear strains are independently interpo-

lated, see e.g. Bathe and Dvorkin [10]. Furthermore, the thickness strains are

approximated according to the paper of Betsch and Stein [11]. The membrane

behaviour is improved by applying the enhanced assumed strain method (EAS)

with five parameters ( Simo and Rifai [12]). The variational formulation and

detailed finite element equations of the ANS–EAS5–element are given in Klinkel

et al. [8].

2.1 Interface layer

Fig. 2 shows a finite element discretization of a plate strip using eight–node

elements. The interface layers, with thickness ht, are positioned in those re-

gions where delamination is expected. Our numerical investigations showed that

the behaviour of the global composite structure remains practically unaltered

for thickness ratios of ht/h ≤ 10−2, where h denotes the thickness of the total

laminate, see Fig. 3. Using a material formulation, the variational equations

Figure 2: Plate strip with delaminated layer and interface element (dark shaded)

are written in terms of the Second Piola–Kirchhoff stress tensor S and the work

conjugate Green–Lagrangian strain tensor E. The tensor components refer to

different basis systems, where the transformations are given in Sprenger et al.

[13].
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Figure 3: Interface layer and softening function

In this paper the criterion of Hashin [2] in terms of the interlaminar normal

stresses S33 and shear stresses S13 and S23 is used to predict the location where

delamination occurs
(S33)2

Z2
0

+
(S13)2 + (S23)2

R2
0

≤ 1 . (1)

Here, Z0 and R0 denote the tensile strength in thickness direction and the shear

strength of the laminate, respectively. In (1) the stress components refer to a local

Cartesian coordinate system, [13]. The criterion of Hashin can only be formulated

in terms of Second Piola Kirchhoff stresses, if the application is restricted to small

deformations. Otherwise the transformation to the Cauchy stress tensor σ has

to be considered.

Furthermore, linear softening behaviour according to Fig. 3 is introduced

Z(α) = Z0 (1 − µα) ≥ 0 with µ > 0 , (2)

where the internal variable α denotes the equivalent inelastic strain. The critical

energy release Gc rate corresponds to the area under the softening curve multiplied

with ht, since in the present model the energy is dissipated within the interface

layer of thickness ht, thus

Gc =
Z2

0ht

2
(

1

E3

+
1

Z0µ
) , (3)

where E3 denotes the elastic modulus in thickness direction. If the elastic defor-

mations are negligible, which means that the first term in the sum cancels out,

the softening parameter µ can easily be determined from (3) as

µ =
Z0 ht

2 Gc

. (4)

Delamination is defined, when the absolute value of the interlaminar stress vector

vanishes. From (2) and Z(α) = 0 follows α =
2 Gc

Z0 ht

.
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2.2 The rate–independent plasticity model

With the assumption of small strains the Green–Lagrange strain tensor E and the

associated rate can be additively decomposed in an elastic and an inelastic part.

The elastic part follows from the linear constitutive law, assuming transversally–

isotropic material behaviour. The inelastic strain rates and the evolution law for

the equivalent plastic strains are given with the inelastic multiplier λ̇. Summa-

rizing, the rate–independent plasticity model is written as

Ė = Ėel + Ėin ,

Ėel = C−1 Ṡ ,

Ėin = Ėpl = λ̇N ,

α̇ = λ̇ .

(5)

The constitutive tensor C in terms of the elasticity constants Ei, Gij and νij is

described in [13]. Here N denotes the gradient of the yield function F (S, α). The

fracture criterion (1) is reformulated and extended by the softening function (2)

as follows

F (S, α) = g(S) − Z(α) (6)

with

g(S) =
√

S · AS , A = Diag

[
0, 0, 1, 0,

(
Z0

R0

)2

,
(

Z0

R0

)2
]

. (7)

The components of A are given here in matrix notation. For α = 0 eq. (6)

is another representation of (1), thus it is formulated with respect to a local

Cartesian coordinate system.

The loading–unloading conditions must hold in (5) - (6)

λ̇ ≥ 0 , F ≤ 0 , λ̇F = 0 . (8)

In case of loading with λ̇ > 0 the rate equations (5) considering N = AS/g

are approximately time–integrated using a backward Euler integration algorithm.

Within a time step tn+1 = tn+∆t one obtains, after some algebraic manipulations,

the stress tensor and the parameter α

Sn+1 =
[
C−1 + λ

Z(αn+1)
A

]−1 [
En+1 − Epl

n

]
= P Etr ,

αn+1 = αn + λ .
(9)

Here, the notation λ := ∆tλ̇n+1, Sn+1 = S(tn+1) and αn+1 = α(tn+1) is used.

The linearization of the stress tensor yields the consistent tangent operator

D̄ = P − PN ⊗ PN

N · PN + H
, H =

Z ′

1 − λZ′
Z

, (10)
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with Z ′ := dZ/dα. If for Z > 0 the softening parameter µ increases certain values,

negative diagonal terms in D̄ occur. In this case the global iteration process to

solve the equilibrium equations becomes unstable. For Z = 0 the expressions for

P and H are undefined. This can be avoided introducing a tolerance.

2.3 Viscoplastic regularization

To prevent the described numerical instabilities, we use a viscoplastic regular-

ization technique. The strain rates are introduced according to the approach of

Duvaut and Lions [14]

Ėin = Ėvp =
1

η
C−1

(
S − S̄

)
,

α̇ = −1

η
(α − ᾱ) ,

(11)

where η denotes the normalized viscosity parameter. In the present case η is a

purely numerical parameter which has the meaning of a relaxation time. The

automatic control for each integration point is presented in the next section.

The stresses S̄ and equivalent plastic strains ᾱ denote the solutions of the rate–

independent theory.

Substitution of eq. (5)2 and (11)1 into eq. (5)1 yields another representation of

(11)
Ṡ +

1

η
S = CĖ +

1

η
S̄ ,

α̇ +
1

η
α =

1

η
ᾱ .

(12)

The solutions of the homogeneous differential equations are obtained analytically.

The inhomogeneous part is solved approximately using a backward Euler integra-

tion algorithm, see also [15]. Introducing Sn = S(tn), δ = ∆t/η and β = exp(−δ)

we end up with

Sn+1 = β Sn + (1 − β) S̄n+1 +
1 − β

δ
C∆E ,

αn+1 = β αn + (1 − β) ᾱn+1 .
(13)

The viscoplastic tangent matrix follows immediately with

D =
dS

dE
=

1 − β

δ
C + (1 − β) D̄ , (14)

The first term in (14) leads to positive diagonal entries in the viscoplastic tangent

matrix, where the factor δ implies that with decreasing η the time increment ∆t
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has to be reduced, to obtain the desired effect. The symmetric matrix D is

necessary to setup the tangent stiffness matrix for the equilibrium iteration.

The calculation of the viscoplastic stresses and associated linearizations is sum-

marized in the flowchart in Table 1. In a standard way the algorithm requires

the storage of the inelastic quantities of time tn.
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• Trial elastic state, time step tn+1 = tn + ∆t

Etr = En+1 − Evp
n , S = CEtr

• Check fracture criterion, if F (S, αn) ≤ 0 ⇒ elastic state

• Start of local iteration: l = 1 , Sl = S , αl = αn , λl = 0

1. Zl = Z(αl) , Z ′
l = dZ(αl)/dα

2. Pl =

[
C−1 +

λl

Zl

A

]−1

3. Sl = PlE
tr, gl =

√
Sl · ASl, Nl =

1

gl

ASl

4. Fl = gl − Zl , F ′
l = −

[
gl

Zl

(
1 − λl

Z ′
l

Zl

)
Nl · PlNl + Z ′

l

]

5. ∆λ = −Fl

F ′
l

6. |∆λ| ≤ TOL ⇒ go to 8.

7. λl+1 = λl + ∆λ, αl+1 = αn + λl+1 , l ← l + 1 , go to 1.

8. Elastic-plastic tangent matrix

Dl = Pl − PlNl ⊗ PlNl

Nl · PlNl + Hl

Hl =
Z ′

l

1 − λl
Z′

l

Zl

Viscoplastic stresses and tangent matrix,

Determination of η see Table 2

• δ =
∆t

η
β = exp(−δ) D̄ = Dl S̄ = Sl ᾱ = αl

• Sn+1 = β Sn + (1 − β) S̄ +
1 − β

δ
C∆E

• αn+1 = β αn + (1 − β) ᾱ

• Evp
n+1 = En+1 − C−1Sn+1

• D = (
1 − β

δ
)C + (1 − β) D̄

Table 1: Flowchart for the inelastic stress analysis
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2.4 Automatic control of the viscosity parameter

The viscoplastic model is employed to prevent numerical instabilities. The choice

of the viscosity parameter η influences the results in a significant way. First of all

η must be big enough to guarantee positive diagonal entries of the viscoplastic

tangent matrix (14). In contrast to that, η must be small enough, such that

the critical energy release rate describes the softening behaviour. Thus, within

the present model η is a purely numerical parameter, which requires automatic

control for each integration point.

For this purpose, we consider the minimum diagonal term of the rate–independent

tangent matrix, thus Rpl =min (D̄ii). Hence, Rel is the corresponding quantity

within the elastic tangent matrix and RTol is the tolerance value. Considering

(14) we define

1 − β

δ
Rel + (1 − β) Rpl −RTol = 0 , (15)

which provides a nonlinear equation in η. An iterative Newton procedure to de-

termine the parameter η is summarized in Table 2. This calculation is performed

for every integration point. In the global equilibrium iteration η is constant for

the respective time step.

As a test for the automatic control we consider the problem according to Fig. 4.

The block with edge length 1 cm is discretized using three eight–node hexahedral

elements. Softening occurs within the interface layer of thickness ht. The material

constants are given in Fig. 4, where the softening parameter µ follows from (4).

The displacement uz is controlled within a geometrically linear calculation. The

results of the parameter variation are depicted in Fig. 5. The applied load F is

shown versus displacement uz. For this simple example the rate–independent so-

lution can be calculated numerically. As the plots show, the viscoplastic solution

with η �= 0 yields higher stresses than the rate–independent solution, so–called

over–stresses. Fig. 5a) depicts the postcritical behaviour using different viscosity

parameters. The curves approach the rate–independent solution with decreasing

η. Only for a very small value of η = 10−4 complete softening with vanishing

normal stress takes place. In this case also a very small time increment is nec-

essary to obtain the regularization effect, see eq. (14). In Fig. 5b) the time

increment is modified. Finally, Fig. 5c) shows that only with automatic control

of η the interlaminar normal stresses completely vanish independently of the time

increment.
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• Setup of starting values

Rpl = Dii = min (Djj)

Rel = Cii

RTol = Rel ∗ 10−6

η = TOL1

Rpl > 0 ⇒ END

• Iteration

1. δ =
∆t

η
, β = exp(−δ) , ω = 1 − β

2. ∆η =
RTol − ω η Rel / ∆t − ω Rpl

Rel (ω / ∆t − β / η) − ∆t β Rpl / η2

3. | ∆η | ≤ TOL2 ⇒ END

4. η ← η + ∆η ⇒ go to 1.

Table 2: Automatic control of the viscosity parameter

z

x

y

uz

F/4

F/4
F/4

F/4

ht

1

E1 = 138000 N/mm2

E2 = 8960 N/mm2

G12 = 7100 N/mm2

G23 = 3446 N/mm2

ν12 = 0.3

Z0 = 51.7 N/mm2

R0 = 91.7 N/mm2

Gc = 0.2585 N/mm

µ = 1.0

ht = 0.01 mm

Figure 4: Tension test: geometry and material data
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Figure 5: Load displacement curves of point 1
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3 Examples

In this section we consider four examples, where primarily the influences of the

introduced geometrical and material quantities are investigated. Variations of

the energy release rate, the thickness and the fibre angle of the interface layer,

the size of the time increment and the mesh density are performed. Comparisons

with available experimental results are given.

3.1 Double cantilever beam test

As a the first example we investigate a double cantilever beam with a given initial

delamination, see Fig. 6. This type of test specimen is often used to measure the

critical mode-I energy release rates. The initial delamination length is adjusted

with a0 = 31.75 mm accounting for the load device at the cantilever tip. The

resultant load q · b amounts to 1.0 kN . We compare our numerical results with

experimental investigations of Aliyu and Daniel [16]. The authors determined a

critical energy release rate Gc = 0.222 N/mm using a crack opening velocity of

ẇ = 0.85 mm/s. The material properties for an AS-4/3501-6 graphite epoxy are

summarized in Fig. 6. The fiber direction within the whole structure corresponds

to the global x–direction .

b = 25.4

x
y

z

[mm]

h = 3.05

q�

q�

a =31.75
0 L = 150

E1 = 138000 N/mm2

E2 = 8960 N/mm2

G12 = 7100 N/mm2

G23 = 3446 N/mm2

ν12 = 0.3

Z0 = 51.7 N/mm2

R0 = 91.7 N/mm2

Gc = 0.222 N/mm

Figure 6: Double cantilever beam: geometry and material data

Due to the symmetry of the structure and loading conditions, only a quarter of

the beam has to be discretized. We use two elements in y–direction and three

elements in z–direction respectively. The number of elements n1 −n4 used in the

x–direction can be seen in Fig. 7. The thickness of the interface layer is chosen

as ht = h/100. The energy release rate is the energy of a body with a certain

volume referring to the newly opened delamination area. Since in the present

case only the lower part of the beam is discretized, the rate of the energy refers

to the corresponding volume fraction, and thus it must be halved. In contrast to
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that the symmetry condition in y–direction does not influence µ. In this case the

ratio of the energy and the newly opened delamination area remains constant.

Thus, the parameter µ is determined via (4) as µ = 7.1.

[mm]

ht

1.525 - ht

2.75 124.6

n = 101 n = 122 n =103 n (variable)4

interface elements
w/2

6.35 22.65

Figure 7: Finite element mesh

w [mm]

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8

Aliyu, Daniel

n4=570

�
q

b
[N

]

Teßmer

Figure 8: Load deflection curve, experimental and finite element results

The present analysis is performed controlling the tip displacement. In Fig. 8 the

load λ qb is depicted versus the crack opening displacement w, where w denotes

the total mutual tip displacement of the beam. Comparisons with the experimen-

tal results of Aliyu and Daniel [16] and numerical results of Teßmer [5] are given.

In [5] a virtual crack closure method is implemented in a so–called multi–director

shell element, where only one element is used in y–direction. Within the elastic

range both numerical solutions agree with the experiment. The crack opening

process starts when the transverse tensile strength Z0 is exceeded. In the soft-

ening range we notice very good agreement of our results with the experiments,

especially for large displacements w.
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The influence of mesh refinement can be seen in Fig. 9. Three different meshes

with n4 = 268, 570, 860 elements in the delamination zone are considered. With

n4 = 570 elements a sufficiently converged solution is achieved.

Next, the influence of time increment ∆t is investigated. Fig. 10 points out

that convergence with a reduction of ∆t is obtained. Note, that the considerable

number of 8000 time steps is necessary to compute the final configuration with

the smallest step size ∆t = 0.0005.

w [mm]

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8

Aliyu, Daniel

n4=268

n4=570

n4=860

�
q

b
[N

]

Figure 9: Double cantilever beam, mesh refinement

Aliyu, Daniel

�t=0.0025

�t=0.0005

�t=0.0010

w [mm]

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8

�
q

b
[N

]

Figure 10: Influence of time step ∆t
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In Fig. 11 the normal stresses S33 are plotted in the x-z-plane for different

crack opening displacements. The plots show the concentration of the stresses

in front of the crack tip. The stress concentration moves with the propagating

delamination front. The newly opened delamination surface is completely free

of stresses. Fig. 12 shows the curved boundaries of the delamination zone for

different crack opening displacements. This phenomenon is well–known from

experiments.

w = 3.02

w = 4.02

w = 5.22

-8.483E+00 min

-5.605E+00

-2.727E+00

1.509E-01

3.029E+00

5.907E+00

8.785E+00

1.166E+01

1.454E+01

1.742E+01

2.030E+01

2.317E+01

2.605E+01

2.893E+01

3.181E+01 max

Figure 11: Normal stresses S33 in x-z-plane for different crack opening displace-

ments

-1.074E+01 min

-6.754E+00

-2.771E+00

1.212E+00

5.195E+00

9.178E+00

1.316E+01

1.714E+01

2.113E+01

2.511E+01

2.909E+01

3.308E+01

3.706E+01

4.104E+01

4.503E+01 max

Figure 12: Transverse normal stresses S33 in a top view at w = 2.8, 3.7 and

4.1 mm
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3.2 Plate strip with delaminated sublayer

In Gruttmann and Wagner [17] and Sprenger et al. [13] the stability behaviour

of a plate strip with a fixed delamination zone has been investigated. Now we con-

sider the same example, however with propagating delamination. The geometry

and material properties are given in Fig. 13.

A

75 7525 25

x

z s

4
F�

delamination

b = 1
[mm]

w

E1 = 137900 N/mm2 G12 = 5860 N/mm2

E2 = 14480 N/mm2 G23 = 5860 N/mm2

ν12 = 0.25 F = 50 N

Figure 13: Delaminated plate strip: geometry and material data

The plate consists of 10 layers with a symmetric stacking sequence

[0◦/90◦/0◦/90◦/0◦]s. Here, 0◦ refers to the x-direction. The delamination zone

lies between layer 9 and 10 in the range 75 ≤ x ≤ 125 mm. In Fig. 14 the

finite element mesh of half the system with different mesh densities is shown.

Furthermore we introduce with n1, n2, n3 the number of elements in length direc-

tion in the depicted ranges. The interface layer with thickness ht is positioned

between layer 9 and 10 in the interval of L2. The discretization in y–direction

and z–direction is performed with one and four elements, respectively. The load-

ing is applied via rigid elements. In Fig. 15 two deformed configurations with

buckled sublaminate are plotted for a finite element mesh with n1 = 12, n2 = 24

and n3 = 24. In both cases the length of the delamination length Ldel is given

and remains constant. The computed load deflection curves represent lower and

upper bounds for the subsequent delamination analysis, see Fig. 16 - 17. In the

first case Ldel = L1 = 25 mm and in the second case Ldel = L1 + L2 = 50 mm

are given for half the system, respectively. The external load is increased un-

til the delaminated layer buckles. The non uniform discretization in z–direction

represents an imperfection for the system. Thus, with increasing load the plate

switches into the secondary solution path without further perturbation. Of course

the structure with the short delamination zone Ldel = 25 mm yields the higher

carrying load. All calculations are done controlling the axial displacement at the

support. In the following we perform a variation of the parameters µ and ht. We

choose n1 = n2 = n3 = 50 and numerical strength parameters Z0 = 0.42 N/mm2,

R0 = 6.0 N/mm2. Fig. 16 shows a plot of the load factor λ versus the transverse
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n
3

n
1

n
2

L =503

L =252

L =251

[mm]

Figure 14: Finite element mesh of the delaminated plate strip

Figure 15: Deformed meshes with short and long delamination zone

displacement w of point A. The curves for the propagating delaminations using

four different softening parameters are enveloped by the solutions with fixed de-

lamination lengths. The softening parameter µ is inversely proportional to the

critical energy release rate Gc. Thus with increasing µ the delamination zone

propagates faster. This behaviour can be observed in Fig. 16. Using a param-

eter µ ≥ 0.75, the delamination develops all over the total range L2 and the

load displacement curve approaches the limit curve. As Fig. 17 for this exam-

ple shows the influence of ht on the global deformation behaviour is practically

negligible. Furthermore, it has been shown that a numerical integration of the

residual vectors and stiffness matrices using four integration points is sufficient

for the relative thin interface layers.

Finally, in Fig. 18 the deformed meshes at different load parameters are plotted.

To illustrate the delamination progress we define the following parameter

D = 100
Z0 − Z(α)

Z0

. (16)

Here, D = 100 % means that the absolute value of the interlaminar stress vector
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is reduced to zero. The plots show that the newly opened surfaces are completely

free of stresses.
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Figure 16: Variation of the softening parameter µ at constant thickness ht =

0.02 mm
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Figure 17: Variation of the thickness ht at constant energy release rate Gc
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Figure 18: Delamination growth for different load factors λ and constant µ = 1.5
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3.3 Plate with initial circular delamination

The next example is a plate consisting of 16 layers with layer thickness hL =

0.12 mm, and stacking sequence [0◦/0◦/ + 45◦/0◦/0◦/ − 45◦/0◦/90◦]S. A circular

delamination is given between layer 14 and 15, see Fig. 19. Cochelin et al. [18]

investigated the stability behaviour of this structure with nongrowing delamina-

tions. The plate is simply supported along the edges. The geometrical data and

the material data for an AS/3501 graphite epoxy composite are given as follows:

E1 = 135000 N/mm2 G12 = 5150 N/mm2

E2 = 8500 N/mm2 G23 = 5150 N/mm2

ν12 = 0.317

Z0 = 51.7 N/mm2 R0 = 91.0 N/mm2

ht = 0.005 mm F = 30 N/mm

(17)

Due to the fibre angles with ±45◦ the structure is not symmetric with respect to

the x-axis and y–axis, respectively. To reduce the computing effort this fact is

ignored in the present analysis. The problem of propagating delaminations can

in principle be studied when discretizing only one quarter of the plate, see Fig.

19 and Fig. 20. The interface elements are positioned between the layers 14 and

15 only in the fine discretized annular space. In thickness direction several phys-

ical layers are summarized within one element layer. This has to be considered

when performing the numerical integration in thickness direction, see Klinkel

et.al [8] The loads are applied via rigid elements, see Fig. 20. The nonlinear

calculations are performed controlling the load parameter λ.

First, we analyze a ”perfect” plate without delamination and thus without the

interface layer. Due to the symmetric layup the plate is loaded as a pure mem-

brane. With increasing axial deformation a bifurcation point is found at load

factor λ = 50.3. A switch to the secondary solution path is possible by a per-

turbation with the first eigenvector. Next, we analyze the behaviour of the plate

with artificial and non growing delamination. One obtains a stress problem due

to the delaminated layer which has the effect of an imperfection. In this case one

obtains a load displacement curve which for large displacements approaches the

secondary solution path of the perfect plate, see Fig. 21.
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Figure 19: Plate with circular delamination: geometry and finite element mesh
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In the following, the influence of the softening parameter µ, the size of the time

step ∆t and the fibre angle ϕ within the interface layer, are investigated. The

load deflection curves in Fig. 21 shows the variation of the softening parameter µ,

and thus the influence of Gc for propagating delaminations. Considering eq. (4)

a parameter µ = 0.58 corresponds to an energy release rate Gc = 0.222N/mm,

which is a realistic value. The largest value of µ = 0.88 corresponds to Gc =

0.147N/mm. Noticeable differences occur in the range of moderate displacements.

This is due to the fact that for finite deformations global buckling dominates the

behaviour. Next, two different time steps ∆t are chosen. There are only minor

differences according to Fig. 22. Furthermore, Fig. 23 shows that the influence

of the fiber angle within the interface layer is neglectable.

Delamination starts at the coordinates (x = 0 mm, y = 5 mm) and propagates

along the inner circle. With increasing load a second point with coordinates

(x = 5 mm, y = 0 mm) becomes critical. Hence, both delamination ranges fuse.

The whole process is depicted in Fig. 24.

[mm]
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t

t

t

}}

}

Figure 20: Finite element discretization of one quarter of the plate
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3.4 Carbon fiber reinforced plate

With the last example we consider a plate with a circular hole, see Fig. 25.

This type of specimen has been investigated numerically in [19]. Energy release

rates have been calculated along measured delamination curves. The experiments

with dynamic cyclic loading have been carried out by the DLR ( Deutsches Zen-

trum für Luft- und Raumfahrt, Institut für Strukturmechanik, Braunschweig).

The symmetric stacking sequence of the layered plate with 18 layers is given as

[0◦/90◦/0◦//(30◦/ − 30◦)3]S, where the fiber angle ϕ = 0◦ corresponds to the

x–axis. The layer thickness is hL = 0.125 mm. The geometrical data and the

material data for a carbon fiber reinforced polymer T300/914C are given in (18).

The dynamic effects of the experiments with several thousands of load cycles are

considered here with reduced values Z0 and R0. Thus, the strength ratios do not

represent measured realistic quantities. Here, we determine the growing delami-

nation zone using the developed model for static loading and compare with the

experimental results.
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y

x

�

4

12
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11
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Figure 25: Geometrical data of a fiber reinforced plate
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E1 = 129000 N/mm2 G12 = 3200 N/mm2

E2 = 9400 N/mm2 G23 = 4300 N/mm2

ν12 = 0.32 µ = 0.2

Z0 = 0.05 N/mm2 R0 = 0.06 N/mm2

ht = 0.00125 mm F = 10 N/mm

(18)

[mm]

ht
0.375 - h /2t

0.75 - h /2t

}

} }

Figure 26: Laminated plate with circular hole

Constant pressure loads are applied along the shorter edges, whereas the other

boundaries are free. Fig. 26 shows the finite element mesh. The stress field

and the delaminations between the 0◦–layer and the 30◦–layer are symmetric

with respect to the middle plane of the plate. This has also been shown by the

experiments. Therefore, only the upper half of the plate is discretized exploiting

symmetry conditions. The arrangement of the interface elements can be seen in

Fig. 26. The physical layers are summarized in the upper and the lower finite

element layer.

The growing delamination ranges are plotted in Fig. 27. The solid lines de-

pict the measured delamination curves. One can see the qualitative agreement

of the experimental results with the numerically computed delamination zone.

Future investigations should apply local mesh refinement, especially in thickness

direction, to obtain more accurate interlaminar shear and normal stresses.
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Figure 27: Delamination growth: Experimental and numerical results
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Conclusions

This paper presents a finite element method to simulate increasing delaminations

in composite structures. Interface layers are discretized using refined eight–node

hexahedrons. These elements have a small, but non–vanishing thickness and are

located in those regions where delaminations are expected. Within an inelastic

model, the delamination criterion of Hashin is extended to a yield criterion with

softening. Numerical instabilities are avoided by a viscoplastic regularization.

The viscosity parameter is determined automatically such that the critical energy

release rate is the essential material parameter. Detailed numerical calculations

show the effectivity, robustness and reliability of the developed delamination

model. An explicit method may be an alternative effective approach to reduce

the computing time. This has been discussed in [9] and is part of future research.
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Faserverbundschalen. Report F00/3 (in German), Institut für Baumechanik

und Numerische Mechanik, Universität Hannover, 2000. 1, 3.1

[6] Schellekens JC, De Borst R. Free Edge Delamination in Carbon-Epoxy Lam-

inates: a Novel Numerical/Experimental Approach. Composite Structures 28

(1994), 357–373. 1

[7] Crisfield MA, Jelenic G, Mi Y, Zhong HG, Fan Z. Some Aspects of the Non-

linear Finite Element Method. Finite Elements in Analysis and Design 27

(1997), 19–40. 1

[8] Klinkel S, Gruttmann F, Wagner W. A Continuum Based Three-Dimensional

Shell Element for Laminated Structures. Computers & Structures 71 (1999),

43–62. 1, 2, 3.3

[9] Wagner W, Gruttmann F. Problemorientierte Modellierung von

Faserverbund-Strukturen. Research report on contract Deutsche Forschungs-

gemeinschaft WA746/6-1. 1, 3.4

[10] Bathe KJ, Dvorkin E. A Continuum Mechanics Based Four Node Shell El-

ement for General Nonlinear Analysis. Engineering Computations 1 (1984),

77–88. 2

[11] Betsch P, Stein E. An Assumed Strain Approach Avoiding Artificial Thick-

ness Straining for a Nonlinear 4-Node Shell Element. Communications in

Numerical Methods in Engineering 11 (1995), 899–910. 2

31



[12] Simo JC, Rifai D. A Class of Mixed Assumed Strain Methods and the Method

of Incompatible Modes. Int. J. Num. Meth. Engng. 29 (1990), 1595–1638. 2

[13] Sprenger W, Gruttmann F, Wagner W. Delamination growth analysis in lam-

inated structures with continuum based 3D-shell elements and a viscoplastic

softening model. Computer Methods in Applied Mechanics and Engineering

185 (2000), 123–139. 2.1, 2.1, 2.2, 3.2

[14] Duvaut G, Lions JL. Les Inequations en Mechanique et en Physique. Dunod,

Paris, 1972. 2.3

[15] Simo JC, Kennedy JG, Govindjee S. Non–Smooth Multisurface Plasticity

and Viscoplasticity. Loading/Unloading Conditions and Numerical Algo-

rithms. Int. J. Num. Meth. Engng. 26 (1988), 2161–2185. 2.3

[16] Aliyu AA, Daniel IM. Effects of Strain Rate on Delamination Fracture

Toughness of Graphite/Epoxy. In: Johnson WS, (editor), Delamination and

Debonding of Materials, ASTM STP 876, 336–348, Philadelphia, 1985. 3.1,

3.1

[17] Gruttmann F, Wagner W. On the Numerical Analysis of Local Effects in

Composite Structures. Composite Structures 29 (1994), 1–12. 3.2

[18] Cochelin B, Damil N, Potier-Ferry M. Asymptotic-Numerical Methods and
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