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Abstract

In this paper a continuum based 3D–shell element for the nonlinear analysis of thin-walled
structures is developed. Assumed natural strain method and enhanced assumed strain method
are used to improve the relative poor element behaviour of a standard hexahedral displacement
element. Different elastic and inelastic constitutive laws are considered. The anisotropic material
behaviour of layered shells is modeled using a hyperelastic orthotropic material law in each layer.
Furthermore, finite multiplicative J2-plasticity is discussed. The models are characterized by
an interface to the material setting of the boundary value problem. Several examples show the
applicability and efficiency of the developed element formulation.

Keywords: Shell element, three–dimensional constitutive equations, linear elastic orthotropic
material law, finite strain plasticity

1 Introduction

The efficient computation of thin structures in structural mechanics requires reliable and robust
elements. Several shell elements have been developed in the past, where the normal stresses in
thickness direction have been incorporated in the variational formulation. The kinematic de-
grees of freedom are the components of the displacement vector and of the extensible director
vector of the reference surface, see e.g [1–4], among many others. The stresses are evaluated
from a three–dimensional material law. This feature is especially useful for complicated nonlin-
ear constitutive equations. Locking effects, which occur if a three–dimensional material law is
used along with constant normal thickness strains, can be avoided. This has been done in [2] ap-
plying the enhanced assumed strain method to the thickness strains. The associated variational
formulation of this method has been developed in [5,6].

For certain problems in structural analysis nodal degrees of freedom at the surface of the shell
are more advantageous. Examples are deformation processes with contact and friction or the
delamination problem of layered shells. For this purpose surface oriented shell elements have
been developed e. g. in [7–10].

In this paper we describe a continuum based shell element and application to some geomet-
rical and physical nonlinear problems. The essential features of the present formulation are
summarized as follows.

∗ Corresponding author. Present Address: Institut für Baustatik, Universität Karlsruhe (TH), Kaiser-
straße 12, D-76131 Karlsruhe, Germany. Tel: +49-721-608-2280; Fax: +49-721-608-6015. E-mail:
bs@uni-karlsruhe.de.
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(i) The shell is parameterized using convective coordinates. Thus, the components of the stress
and strain tensors refer to local convective base vectors. The basic hexahedral element using
tri–linear shape functions possesses three displacement degrees of freedom at the nodes.
Boundary conditions at the top or bottom surface of the shell can be considered.

(ii) The relative poor behaviour of the standard displacement element is improved using the
assumed strain method and the enhanced strain method. To avoid shear locking the as-
sumed natural strain method is applied to the transverse shear strains, see [11] for plates.
Furthermore the thickness strains are approximated using special interpolation functions
introduced in [3] for a shell formulation with an extensible director vector. This is necessary
to avoid artificial thickness strains. The membrane behaviour and the bending behaviour
is essentially improved applying the enhanced assumed strain method to the membrane
strains and to the thickness strains. The associated variational formulation is written in
a Lagrangian setting using the Green–Lagrangian strain tensor. Due to the different ap-
proximations of the strain components the element possesses an orientation which has to
be considered within the mesh generation.

(iii) Different three–dimensional constitutive laws are implemented. For laminated structures
with privileged directions a hyperelastic anisotropic material law is given. The strain en-
ergy is formulated using so–called structural tensors. One obtains a coordinate invariant
formulation and material frame indifference is automatically fulfilled. Furthermore we con-
sider finite J2-plasticity along with isotropic elastic behaviour. Here we present a material
formulation of the theory, see also [12] for membranes. In this case the interface to the
assumed strain formulation using Lagrangian strain measures is preserved.

2 Basic equations

Let X be a material point of the considered structure B and denote by X and x the posi-
tion vectors of X in the reference and current configurations, respectively. The motion χ is
a mapping, such that x = χ(X, t) at time t. Hence, recall that the deformation gradient F
at a material point is defined as F := ∂χ/∂X. The displacement field u is obtained with
u(X, t) = χ(X, t) − X. With the assumptions that the function χ is sufficiently smooth and
detF = 1 at t = 0, invertibility of the motion requires that J = detF > 0 for all (X, t).
Furthermore we denote by ρ0 and ρ = J ρ0 the density at a material point in the reference
and current configuration, respectively. In a standard way the right Cauchy–Green tensor is
introduced as C := FTF and the Green–Lagrangian strain tensor as E := 1

2
(C − 1) with the

second order unit tensor 1.

The considered shell is parameterized by convective coordinates, where ξ1 and ξ2 are inplane
coordinates and ξ3 denotes the thickness coordinate. Hence the covariant base vectors are
obtained by partial derivatives of the position vectors with respect to the convective coordinates
ξi , i = 1, 2, 3

Gi =
∂X

∂ξi
, gi =

∂x

∂ξi
, (1)

whereas the contravariant base vectors are defined by Gi · Gj = δj
i and gi · gj = δj

i . The
deformation gradient can be written as F = gi ⊗Gi. This leads to the following representation
of the Green–Lagrangian strain tensor

E = Eij Gi ⊗ Gj , Eij =
1

2
(gij − Gij) , (2)
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where gij = gi · gj and Gij = Gi ·Gj denote the metric coefficients of the current configuration
and of the reference configuration, respectively.

We assume surface loading t̂ and volume forces ρ0b̂ acting on the shell. Following the approach
in [13] and [14] the three-field variational functional is given in a material formulation

Π(u, Ẽ, S̃) =
∫

B0

(ψ(E + Ẽ) − S̃ : Ẽ) dV −
∫

B0

ρ0b̂ · u dV −
∫

∂B0

t̂ · u dA , (3)

where ψ denotes the elastic free energy per unit volume of the reference configuration. Note,
that Π is a function of the independent tensorial quantities u, Ẽ and S̃, where Ẽ denotes the so–
called enhanced strain tensor and S̃ the independent stress tensor. Introducing an orthogonality
condition for the stress field S̃ and the enhanced strain field Ẽ the variational formulation can be
reduced to a two–field problem. The first and second variation of above functional are specified
in detail in Klinkel et al. [10].

In the following we discuss the essential features of the finite element formulation. First, the
position vectors of the reference and current configuration are approximated as follows

Xh =
nel∑
I=1

NI(ξ
1, ξ2, ξ3)XI xh =

nel∑
I=1

NI(ξ
1, ξ2, ξ3)xI , (4)

with nel = 8 and NI(ξ
1, ξ2, ξ3) = 1

8
(1+ ξ1

I ξ
1)(1+ ξ2

I ξ
2)(1+ ξ3

I ξ
3) . The index h is used to denote

the finite element approximation.

It is well–known that above displacement formulation is too stiff, especially when these elements
are used to discretize thin structures. Therefore we apply the assumed strain method to reduce
the locking effects. To avoid shear locking the transverse shear strains are approximated using
the interpolation functions of Bathe and Dvorkin [11]. For thin shell structures with bending
dominated loading locking due to artificial thickness strains has been observed by Ramm et
al. in [15] when using a direct interpolation of the director vector. To improve the element
behaviour an ANS–interpolation of the thickness strains E33 using bi–linear shape functions
for four–node shell elements have been proposed e.g. by Betsch, Stein in [3]. Here, we adapt
this procedure to the hexahedral element, see [10]. Numerical investigations showed that it is
sufficient to apply the approximations in the middle plane of the element.

The membrane behaviour of the element can be essentially improved using the enhanced as-
sumed strain method. The components of the enhanced strain tensor as are introduced in (3)
are given with respect to different base vectors

Ẽ = Ẽij Gi ⊗ Gj =
detJ0

detJ
Ẽ0

ij Gi
0 ⊗ Gj

0 , (5)

with J = [G1, G2, G3] . The vectors Gi
0 and matrix J0 are evaluated at the element center.

Following common usage in the finite element literature we arrange the tensor components in
a vector as follows

E = [E11, E22, E33, 2 E12, 2 E13, 2 E23]
T . (6)

From (5) we obtain the matrix representation

Ẽ =
detJ0

detJ
T0

E Ẽ0 with Ẽ0 = M(ξ1, ξ2, ξ3) αe . (7)
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Here, T0
E denotes a transformation matrix and M the interpolation matrix associated with 5

or 8 independent parameters arranged in the vector αe. All matrices are specified in detail in
Klinkel et al. [10].

Remark:
An alternative enhanced strain formulation for extensible shells is given in Betsch [16]. Following
Simo and Rifai [6] the material deformation gradient is enhanced in [16] with incompatible
parts for the membrane and thickness strains. Numerical investigations showed no significant
differences to the enhanced strain formulation using the Green–Lagrangian strain tensor even
in the range of finite strains. The advantage of the latter formulation lies in the fact that the
geometric stiffness matrix corresponds to the one of the displacement formulation.

3 Orthotropic elastic material

In this section we formulate the constitutive equations for layered fiber reinforced composite
shells. Assuming orthotropic elastic material behaviour the privileged directions are described
by the orthogonal base system ti , i = 1, 2, 3. The tensor products

1M = t1 ⊗ t1 2M = t2 ⊗ t2 3M = t3 ⊗ t3 (8)

are called structural tensors. The third tensor 3M is not independent and can be replaced using
1M + 2M + 3M = 1.

According to [17], [18] the elastic free energy can be written as a function of the structural
tensors and the linear strain tensor ε as ψ = ψ(ε, 1M, 2M). Here, for the geometrical nonlinear
range with moderately large strains the strain energy is assumed to be a quadratic function of
the invariants

trE , trE2 , tr(1ME) , tr(1ME2) , tr(2ME) , tr(2ME2) . (9)

With the assumption of a stress free reference configuration ψ is given as

ψ(E, 1M, 2M)) =
λ

2
(trE)2 + µ trE2

+ (α1 tr(1ME) + α2 tr(2ME)) trE

+ 2µ1 tr(1ME2) + 2µ2 tr(2ME2)

+
β1

2
(tr(1ME))2 +

β2

2
(tr(2ME))2

+ β3(tr(
1ME))(tr(2ME)) .

(10)

The nine parameters λ, µ, µ1, µ2, α1, α2, β1, β2, β3 are independent material constants. The
relation to the classical engineering parameters E1, E2, E3, ν12, ν13, ν23 and G12, G13, G23 can be
derived, see e.g. [18]. Transversal isotropic behaviour is included as special case. This function
leads to a coordinate invariant representation of an orthotropic constitutive law.

The derivative of (10) with respect to the Green–Lagrangian strain tensor yields the work
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conjugate Second Piola–Kirchhoff stress tensor

S =
∂ψ

∂E
= λ trE 1 + 2µ E

+(α1 t1 · Et1 + α2 t2 · Et2)1

+(α1 t1 ⊗ t1 + α2 t2 ⊗ t2) trE

+2µ1 (t1 ⊗ t1E + Et1 ⊗ t1)

+2µ2 (t2 ⊗ t2E + Et2 ⊗ t2))

+β1(t
1 · Et1)t1 ⊗ t1 + β2(t

2 · Et2)t2 ⊗ t2

+β3(t
1 · Et1)t2 ⊗ t2 + (t2 · Et2)t1 ⊗ t1) .

(11)

The second derivative yields the symmetric and constant material tensor

C =
∂2ψ

∂E2
= λ 1 ⊗ 1 + 2µ II

+α1 [(t1 ⊗ t1) ⊗ 1 + 1 ⊗ (t1 ⊗ t1)]

+α2 [(t2 ⊗ t2) ⊗ 1 + 1 ⊗ (t2 ⊗ t2)]

+2µ1 (t1 ⊗ II[2]t1 + t1 [2]
II ⊗ t1)

+2µ2 (t2 ⊗ II[2]t2 + t2 [2]
II ⊗ t2)

+β1 (t1 ⊗ t1 ⊗ t1 ⊗ t1) + β2 (t2 ⊗ t2 ⊗ t2 ⊗ t2)

+β3 (t1 ⊗ t1 ⊗ t2 ⊗ t2 + t2 ⊗ t2 ⊗ t1 ⊗ t1)

(12)

with

t1 ⊗ II[2]t1 = t1 i Gjk t1 l (Gi ⊗ Gj ⊗ Gk ⊗ Gl)

t2 [2]
II ⊗ t2 = Gij t2 k t2 l (Gi ⊗ Gj ⊗ Gk ⊗ Gl)

(13)

and

1 = Gij Gi ⊗ Gj

II = GikGjl (Gi ⊗ Gj ⊗ Gk ⊗ Gl) .
(14)

The components of t1, t2 are given with respect to the convective base vectors Gi.

4 Finite J2-plasticity

In this section a framework of finite J2-plasticity in a material setting is presented. As basic
kinematic assumption we introduce the multiplicative decomposition of the deformation gradi-
ent in elastic and plastic part F = Fe Fp . This implies a stress free intermediate configuration
which is defined by Fe−1. It is well–known that the decomposition is unique up to a rotation.
The relevant strain tensors are defined as follows

C = FT F b = FFT

Cp = FpT Fp bp = Fp FpT

Ce = FeT Fe be = Fe FeT .

(15)
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The constitutive equations are restricted by the dissipation inequality. The local dissipation
function D per unit of the reference volume is defined as the difference between the local stress
power and the local rate of the free energy D = τ : d − ψ̇ ≥ 0 . Here, d = F−T ĖF−1 denotes
the rate of deformation tensor and τ = FSFT is the Kirchhoff stress tensor. Introducing the
free energy ψ = ψ(be, ε̄) as function of the elastic left Cauchy–Green tensor be and the internal
variable ε̄, the time derivative of ψ can be expressed with be = FCp−1FT . Following stan-
dard arguments in thermodynamics with internal state variables, one obtains the constitutive
equation

τ = 2
∂ψ

∂be
be . (16)

Hence, considering Ċp−1 Cp = −Cp−1 Ċp the reduced dissipation inequality reads
D = τ : 1

2
FCp−1ĊpF−1 + ζ ˙̄ε ≥ 0 , where ζ := −∂ψ/∂ε̄ is thermodynamic conjugate to ε̄.

The evolution equations for the plastic strains are derived using the principle of maximum plas-
tic dissipation. Thus, the actual state (τ , ζ) leads to maximum dissipation among all admissible
states (τ̃ , ζ̃) ∈ E:

(τ̃ − τ ) :
1

2
FCp−1ĊpF−1 + (ζ̃ − ζ) ˙̄ε ≤ 0 . (17)

If E, defined by the yield condition φ(τ , ζ) ≤ 0, is a convex domain, a standard result in convex
analysis yields along with the loading–unloading condition γ̇ ≥ 0, φ ≤ 0, γ̇φ = 0 the normality
rule for the inelastic strains

1

2
FCp−1ĊpF−1 = γ̇

∂φ

∂τ

˙̄ε = γ̇
∂φ

∂ζ

(18)

Thus we obtain the flow rule in a Lagrangian setting. The corresponding spatial representation
is given in [19] or [20].

The flow rule is approximately integrated using the so–called exponential mapping, e.g. [21].
With this type of integration the condition of plastic incompressibility is exactly preserved, see
e.g. [20]. The rate of the equivalent plastic strain is integrated using the standard backward
Euler integration algorithm. Within a time interval [tn, tn+1] one obtains

Cp
n+1 = Cp

n exp[2 γn+1 (F−1
n+1

∂φn+1

∂τ n+1

Fn+1)]

ε̄n+1 = ε̄n + γn+1
∂φn+1

∂ζn+1

,
(19)

where γn+1 := (tn+1 − tn) γ̇n+1 is the so–called consistency parameter.

To evaluate the exponential function we introduce the spectral decomposition of the relevant
strain tensors. First, the spectral decompositions of the deformation gradient and its inverse
are given

F =
3∑

A=1

λe
A nA ⊗ N̂A , F−1 =

3∑
A=1

1

λe
A

N̂A ⊗ nA , (20)

with the elastic stretches λe
A and the below defined eigenvectors.

The elastic principal stretches can be evaluated solving the eigenvalue problem with respect to
the three different configurations, see e.g. [22]. Here, we use a Lagrangian representation

(C − λe
A

2Cp) N̂A = 0 with N̂A · Cp N̂B = δAB , (21)
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where Cp =
∑3

A=1 N̂A ⊗ N̂A. With this approach the interface to the above documented finite
element formulation is automatically maintained.

Eq. (21) implies an eigenvector basis, which is defined by

N̂A · N̂B = δA
B , N̂A =

1

λp
A

NA , N̂B = λp
B NB . (22)

Introducing the spectral decomposition F−1 ∂φ
∂τ F =

∑3
A=1

∂φ
∂τA

N̂A ⊗ N̂A eq. (19)1 is rewritten
as

Cp
trial := Cp

n =
3∑

A=1

exp[−2γn+1
∂φn+1

∂τAn+1

] N̂An+1 ⊗ N̂An+1 (23)

and with Cp
trial =

∑3
A=1 N̂Atrial

⊗ N̂Atrial
we define

N̂Atrial
:=

λe
An+1

λe
Atrial

N̂An+1

λe 2
Atrial

:= exp[2γn+1
∂φn+1

∂τAn+1

]λe 2
An+1

.
(24)

Thus, the elastic trial stretches are computed with the solution of the general eigenvalue problem

(C − λe 2
Atrial

Cp
trial) N̂

A
trial = 0 . (25)

To complete the formulation we now specify the free energy ψ(be, ε̄) = ψel(be) + ψpl(ε̄) in a
decoupled form, where ψpl(ε̄) denotes the part due to isotropic plastic hardening. The internal
variable ε̄ corresponds to the equivalent plastic strain. For isotropic material behaviour the
strain energy ψel(be) can be expressed in terms of the eigenvalues of be. Here, the elastic strain
energy is postulated as a quadratic function of the logarithmic strains εA = log(λe

A)

ψel =
λ

2
[εe

1 + εe
2 + εe

3]
2 + µ[(εe

1)
2 + (εe

2)
2 + (εe

3)
2] (26)

with the Lamé parameters λ and µ. Introducing the vectors εe = (εe
1, εe

2, εe
3)

T and τ̃ =
(τ1, τ2, τ3)

T , the derivative of ψel with respect to εe yields

τ̃ = C εe C = κ1 ⊗ 1 + 2 µ IP (27)

with the bulk modulus κ = λ + 2
3
µ and the shear modulus µ = G . The vector 1 is defined by

1 = (1, 1, 1)T and the projection matrix IP is given with IP = II− 1
3
11T where II = diag(1, 1, 1).

Applying the logarithm function to (24)2 yields an additive decomposition as follows

εe
trial = εe

n+1 + γn+1
∂φn+1

∂τ̃ n+1

. (28)

where εe
trial = (εe

1, εe
2, εe

3)
T
trial and εe

Atrial
= log λe

Atrial
.

The yield condition is assumed to be of von Mises–type and can be written in terms of the eigen-
values of the Kirchhoff stress tensor. With a saturation–type function for isotropic hardening
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it holds

φ(τ̃ , ζ) = g − (y0 − ζ)

g =
√

3
2
τ̃ T IP τ̃

−ζ = h ε̄ + (y∞ − y0)(1 − exp[−η ε̄]) ,

(29)

where, h, y0, y∞, η are material parameters. The derivative of the yield condition with respect
to τ̃ and q is expressed as

∂φ

∂τ̃
=

3

2g
IP τ̃

∂φ

∂ζ
= 1 . (30)

Hence, combining (27), (28) with (30) yields after some algebra

τ̃ n+1 = C εe
n+1 = (C−1 +

3γn+1

2gn+1

IP)−1εe
trial . (31)

As can be seen, the combination of the exponential mapping with the logarithmic strains
leads to a stress projection algorithm in the space of principal stresses, which is identical to
the infinitesimal theory, see also [20]. The unknown consistency parameter γn+1 is iteratively
determined by fulfillment of the yield condition (29) using a Newton iteration scheme. For the
special case of linear hardening a direct solution of the yield criterion with respect to γn+1

without iteration is possible.

The algorithmic elastoplastic tangent modul is derived as follows

dτ̃ n+1

dεn+1

= κ1 ⊗ 1 + 2µϑ1 IP − 2µϑ2 n ⊗ n , (32)

with

n =
dev τ̃ trial

|dev τ̃ trial|
ϑ1 = 1 − 3 µγn+1

gtrial

ϑ2 =
3 µ

3 µ + y′ +
gn+1

gtrial

− 1

y′ = h + (y∞ − y0) η exp[−ηε̄n+1] .

(33)

The function gtrial is defined with (29)2 replacing τ̃ with τ̃ trial = C εe
trial.

Pullback of the Kirchhoff stress tensor yields the Second Piola Kirchhoff stress tensor S =
F−1τFT−1 with eigenvalues SA =

τAn+1

λe A
Atrial

.

The associated fourth order tangent tensor has been derived in [23]

Cep =
∑3

A=1

∑3
B=1 CAABB (N̂A

trial ⊗ N̂A
trial ⊗ N̂B

trial ⊗ N̂B
trial)

+
∑3

A �=B CABAB (N̂A
trial ⊗ N̂B

trial ⊗ N̂A
trial ⊗ N̂B

trial

+ N̂A
trial ⊗ N̂B

trial ⊗ N̂B
trial ⊗ N̂A

trial)

(34)
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with the coefficients

CAABB =
∂SA

∂EB

= λe −2
Atrial

(
∂τAn+1

∂εBn+1

− 2 τAn+1 δAB) λe −2
Btrial

CABAB =
1

2

SA − SB

EA − EB

=
SA − SB

λe 2
Atrial

− λe 2
Btrial

.

(35)

As can be seen eq. (34) leads to symmetric tangent matrices.

5 Numerical examples

With the following five examples we demonstrate the behaviour of the developed hexahedral
finite element in several nonlinear applications. Different modifications of elements based on the
enhanced assumed strain method (EAS) and the assumed natural strain method (ANS) have
to be distinguished. The introduced abbreviations to describe the special element types are
given in Table 1. As an example, the element type Q1A2E5 denotes a standard displacement
element(Q1) with assumed shear strain interpolation(A2) and five enhanced strain parame-
ters(E5). In addition a Q1E30–element has been used for comparisons. This element is formu-
lated with respect to a global Cartesian basis system and possesses 30 enhanced parameters for
all strain components, see [14].

Abbr. Description

Q1 Displacement based hexahedral element

A1 ANS on E33

A2 ANS on E13 and E23

A3 ANS on E13, E23 and E33

E5, E8 EAS with 5 or 8 parameters

E30 EAS with 30 parameters
Table 1
Abbreviations to denote different element types

5.1 Clamped cylindrical shell segment

In the first example we discuss the behaviour of a clamped cylindrical shell segment subjected
to a single load F = λF0 with F0 = 200 at the free end, see Figure 1. The geometrical data are:
length of the cylinder L = 304.8, inner radius Ri = 100.1 and thickness t = 3.0. A corresponding
example with isotropic material has been investigated e.g. in [24]. Here, we consider a composite
material with the layer sequences 0◦/90◦/0◦ and 90◦/0◦/90◦, where 0◦ and 90◦ are related to
the axial and circumferential direction of the cylinder. The data for the transversal isotropic
material are given in Figure 1. Due to symmetry, only half of the system is discretized. The
numerical calculations are performed with a regular and a distorted 16 × 16 × 1 finite element
mesh, see Figure 1.

Different aspects are discussed in the following. At first we compare our results for the hexahe-
dral element Q1A3E5 to earlier calculations using a four–node shell element [25]. In Figure 2
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Fig. 1. Cylindrical shell segment: regular and distorted FE–mesh

load deflection curves are depicted for both layer sequences. There is good agreement over the
entire range of deformation for both elements. Next we investigate the influence of the ANS
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shell 90-0-90

Fig. 2. Cylindrical shell segment: hexahedral versus shell–element

and EAS interpolations.In Figure 3 load deflection curves are depicted for different element
types. Here, a layer sequence 90◦/0◦/90◦ has been used. According to Figure 2, results obtained
with the Q1A3E5 element can be regarded as reference solution. It can be seen clearly that the
Q1A1E5 element without ANS interpolation for the transverse shear strains is too stiff, even
in the linear range. The next element, the Q1A3 element without enhanced strain formulation
leads to correct deflections within the linear theory. However, with increasing load a locking
effect can be observed. Nearly accurate results are obtained using the Q1A2E5 element. The
additional ANS interpolation for the thickness strains in the Q1A3E5 element yields an im-
provement in the range of large deformations. This example shows that the EAS method applied
to the membrane strains and thickness strains is less important than the ANS interpolation for
the shear strains and thickness strains.
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Finally we consider the influence of mesh distortion on the results. The used meshes are shown
in Figure 1. Again a layer sequence 90◦/0◦/90◦ has been used. Here, we compare the Q1E30

irregular mesh Q1A3E5
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Fig. 4. Cylindrical shell segment: influence of mesh distortion

element with 30 enhanced assumed strain parameters with the Q1A3E5 element. As can be
seen in Figure 4, the Q1A3E5 element is fairly insensitive with respect to mesh distortions. The
Q1E30 element gives accurate results for the regular mesh but leads to considerable locking for
the distorted mesh.

5.2 Slit tubular segment

In [26] Galletly and Guest have discussed the behaviour of a deployable structure, of tubular
cross–section, manufactured from a novel composite layup. The stability behaviour has been
investigated using a beam–type model. Here, we discretize the structure using the developed
hexahedral elements. For simplicity we consider isotropic material behaviour. Geometrical and
material data as well as loading and boundary conditions are depicted in Figure 5. Note that
at z = 0 the tube is supported in z-direction, to avoid rigid body motions. The tube is loaded
by a single moment at z = L. Four rigid body elements, described in [27], have been added to
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Fig. 5. Tubular segment: geometry and material data

apply the loading on the hexahedral element. The structure is discretized with a 9 × 32 × 1
mesh of Q1A3E5 elements.

A displacement driven calculation yields the load deflection curve depicted in Figure 6 for
the moment M = Mx versus the rotational degree of freedom ϕ = ϕx. A comparison with
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Fig. 6. Tubular segment: moment M versus rotational degree of freedom ϕ

results using again a four–node shell element [25] shows good agreement over the entire range
of deformation.

The deformation behaviour of the tube is illustrated by different deformed meshes, see Figure 7.
At ϕ = 1.30 a first limit point occurs. Here the initial curvature in transverse direction vanishes
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at the loaded end. For rotational parameters ϕ ≥ 1.62 the deformation takes place at a nearly
constant moment.

� =1.30 � =1.62

� =6.57� =6.15

Fig. 7. Tubular segment: deformed systems at different load steps
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5.3 Pinched cylinder

The pinched cylinder according to Figure 8 is a representative example for finite deformations.
The cylinder is supported at one end by a rigid diaphragm. At the other end two opposite single
loads act. The boundary conditions of the rigid diaphragm are modelled in two alternative ways.
Model A approximates a soft support within a shell formulation, whereas model B provides an
approximation for hard support.

F

F

w

R

x

y

z

L

rigid

diaphragm model A model B

Fig. 8. Pinched cylinder: problem and modeling of boundary conditions at the rigid diaphragm

The geometry is described by: radius R = 300, length L = 600 and thickness t = 3. Furthermore,
the material data are given for isotropic elastoplasticity: E = 3000, ν = 0.3, y0 = 24.3 and
h = 300. Considering symmetry, only one quarter of the cylinder is discretized with 16x16x1
elements. The computed load deflection curves are depicted in Figure 9. As can be seen there
is good agreement for model B with a reference solution [4], whereas the boundary conditions
of model A lead to a different results. A deformed configuration at w = 250 and the equivalent

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250

L
o

ad
F

Displacement w

Wriggers et al.

model A Q1A3E5
model B Q1A3E5

Fig. 9. Pinched cylinder: load deflection curves for different boundary conditions

plastic strains are depicted in Figure 10.

5.4 Conical shell

With this example we investigate the elastoplastic behaviour of a conical shell under ring load.
The geometrical data are taken from Başar and Itskov [28], who investigated this problem
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Fig. 10. Pinched cylinder: deformed mesh and distribution of equivalent plastic strains at w=250

in case of an Ogden material. All necessary data are depicted in Figure 11. The system is
slightly modified due to eccentric loading and boundary conditions. Considering symmetry,

p

p pr

R

L

t

geometry:

r = 1

R = 2

L = 1

t = 0.1

load:

p = 1

material:

E = 206.9

ν = 0.29

y0 = 0.45

y∞ = 0.715

h = 0.12924

η = 16.93

Fig. 11. Conical shell: finite element mesh with geometry and material data

only a quarter of the conical shell is discretized with 8x8x1 Q1A3E5 elements. Thus only
symmetric buckling behaviour may occur. For this problem a nine point integration scheme has
been introduced to avoid zero energy modes, see [29]. The nonlinear behaviour is computed
using an arc–length algorithm with displacement control. The results are depicted in Figure
12, where w denotes the vertical displacement of the upper outside edge. The load is increased
until w = 0.02, where the elastic limit is reached. Hence a rolling process starts at top of
the conical shell. A further stability point is traced at w = 1.21. Here, a global snap through
behaviour of the shell is observed. This is also shown with the deformed meshes in Figure 13.
A local minimum of the load deflection curve is attained at w = 1.75. Then a stable path with
increasing loads due to stiffening effects arises. The structure is unloaded at a total deflection
of w = 2.25. Figure 12 shows the completely unloaded shell at w = 2.239. Finally the initial
mesh and the final deformed mesh of the unloaded shell are plotted in Figure 14. As can be
seen there is relatively little elastic spring back.
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Fig. 13. Conical shell: deformed meshes and associated equivalent plastic strains

5.5 Hemispherical shell

This example provides a standard test in linear and nonlinear shell computations. A hemispher-
ical shell with an 18◦ hole is loaded by four opposite forces. The material and geometry data
are given in Figure 15. Considering symmetry, only a quarter of the shell is discretized with
16x16x1 Q1A3E5 elements. The details of the loading are depicted in Figure 15. Here we inves-
tigate the element behaviour within a dynamic problem. Applying a pulse loading according
to Figure 16, the answer of the system is evaluated using a standard Newmark algorithm. We
choose a constant time step ∆t = 10−5. Results for the displacements uA and uB are presented
in Figure 17, whereas deformed meshes are depicted in Figure 18.
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Fig. 14. Conical shell: initial and deformed unloaded system
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ν = 0.3

ρ = 2.0 · 10−6

Fig. 15. Hemispherical shell: geometry and material data
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Fig. 16. Hemispherical shell: load time history

6 Conclusions

In this paper a continuum based hexahedral shell element has been presented. Assumed natural
strain method and enhanced assumed strain method have been used to improve the relative
poor element behaviour of the displacement element. Numerical tests have shown that the
ANS–interpolations for the transverse shear strains and the thickness strains are essential for a
locking–free element behaviour. Due to the developed techniques an element orientation exists
which has to be taken into account within the mesh generation. For the EAS–interpolations it
turns out that many enhanced parameters lead to a loss of robustness within the equilibrium
iteration. This holds especially for inelastic computations. Furthermore, only minor improve-
ments can be achieved with more than five parameters. Based on the described numerical tests
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Fig. 17. Hemispherical shell: displacements uA and uB versus time
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Fig. 18. Hemispherical shell: deformed configurations

the Q1A3E5–element is recommended for the nonlinear analysis of thin–walled shell structures.
The presented examples show the range of applicability and the efficiency of the developed
element formulation.
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