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Abstract

A simple numerical model based on three-dimensional analytical considerations is proposed for an

estimation of the local effects of a cylindrical hole in the matrix as well as of fiber-matrix interface

imperfections on compressive stability of fibers in fiber-reinforced composites. The geometry of

the model includes an inclusion (a fiber) in a matrix with the assumption of an imperfect bonding

at the interface and a cylindrical hole in the closest neighborhood. Then the problem formulation

is idealized in two directions, providing a possibility of establishing lower and upper bounds for

critical loads for the case of a matrix with a cylindrical hole of a non-circular cross-section as well

as for the case of interface imperfections with the possibility of sliding without discontinuity of the

displacements normal to the interface. The model takes into account the distinct difference in the

properties of the fiber and the matrix and the spatial character of the problem at the microlevel.

It is based on individual consideration of the fiber and the matrix with a hole with the necessity

of satisfying certain idealized bonding conditions between them.

Keywords: fibrous composites, stability, imperfect bonding, damage, bound estimation

1 Introduction

It is commonly accepted that the compressive strength of fiber-reinforced composites can be limited

by the possibility of occurring of fiber microbuckling in the matrix. Once this process begins,

other degradation mechanisms can be triggered due to a subsequent redistribution of stresses.
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The possibility of fiber microbuckling in composite materials was first mentioned in [1]. The

phenomenon was described as a longitudinal short-wave bending, similar to the case of a beam

supported by an elastic foundation [2].

Numerous works were devoted since that time to experimental observations of the mentioned

phenomenon as well as to developing analytical and computational models reflecting various aspects

of the fiber microbuckling. The overwhelming majority of the models addressing the fiber-matrix

buckling phenomena are two-dimensional and substitute in fact the 3D internal structure of fiber

composites with a layered one. The first one seems to be proposed in [3], followed by many

others, for example [4, 5, 6]. In [7] a question is posed on the applicability of the representation

of fiber-reinforced composites by means of a layered medium. Many authors introduce in their

models imperfections like initial fiber misalignment and waviness, in order to lower the predicted

critical loads. Failure modes and various aspects connected with microbuckling and kinking-like

phenomena were discussed among others in [8, 9, 10, 11, 12, 13].

Three-dimensional approaches to the problem of fiber microbuckling are less numerous because

of substantially more complicated problem formulations. They are presented, among others, in

[14, 15, 16, 17, 18, 19, 20]. In order to obtain solution of the problem, some authors use significant

simplifications. For example, in [14], a three-dimensional description of the matrix behavior was

combined with the beam theory for the description of the fibers. Reviews focusing on 3D approaches

can be found in [18, 19]. Special attention in these reviews is given to the results based on the

equations of the three-dimensional theory of stability of deformable bodies [21].

There also exist a great number of works addressing explicitly buckling of whole layers (isotropic

or anisotropic) in laminated structures, with or without cracks and delaminations between them

(see for example [18, 22, 23, 24, 25], which provide further references). This paper does not intend

to review publications in this area, but we would like to mention principal distinctions of the

present formulation in comparison to those works, dealing with buckling problems for layers in

a composite. In the latter works the internal structure of unidirectional layers, which consists

of fibers, matrices and fiber-matrix interfaces and is essentially three-dimensional, is smeared out

by means of a homogenization procedure or by simply considering a sequence of uniform layers.

Such approaches are sometimes called meso-approaches, because they correspond to the scale of

interaction of layers in a layered structure. The questions posed by the present paper correspond to

a quite different scale (the fiber-matrix scale and not to the layer-layer scale), with a qualitatively

different geometry (3D and not 2D). This is the reason why these questions cannot be answered

by means of some kind of a ”layered” formulation with flat interfaces.
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A review on the stability problems for laminated composites can be found in [18]. Some typical

approaches and corresponding literature listings covering a broader spectrum of related problems

for composite materials, including imperfections and interfacial effects, are presented in [26, 27, 28,

29, 30, 31, 32] and others. Failure theories for fibrous composites in compression are also reviewed

in [5, 33].

It seems to be not possible to study such local effects as the effects of separate cylindrical holes in

the matrix and of fiber-matrix interface imperfections on compressive stability in fiber-reinforced

composites within the framework of substantially simplified approaches, like 1D or 2D ones, or con-

tinual theories. As a result, these phenomena and especially their combination were not sufficiently

studied. Here, the aforementioned effects are estimated by means of developing a relatively simple

3D numerical model, which constitutes the novelty of this paper. The model is characterized by

individual 3D consideration both of the fiber and the matrix weakened by a cylindrical hole. It

proposes a procedure for determining three types of bounds for critical loading parameters, includ-

ing lower and upper bounds for the case of a fiber in an elastic matrix near a cylindrical hole of

a non-circular cross-section, bounds for the case of some bonding (adhesion) imperfections at the

fiber-matrix interface without normal displacement discontinuity, as well as for a somewhat more

general case in which both types of the defects are present. These bounds are based on numerical

solutions of a model problem for a fiber near a cylindrical hole of a circular cross section in the

matrix. The bonding conditions between the fiber and the matrix are satisfied numerically with a

controlled accuracy in two cases, having an evident mechanical meaning. In the first case, all force

and displacement components are continuous at the interfacial surface. In the second one, the

shear force components both in the fiber and the matrix are equal to zero at the interface, while

normal components of forces and displacements are continuous. The strategy proposed provides a

possibility to consider the interface and the surface of the hole three-dimensionally and this way

to avoid simplifications of the corresponding boundary conditions on these surfaces, inevitably

imposed when using 1D, 2D, or continual approaches.

It is worth noting that this paper addresses three-dimensionally some important cases of micro-

interactions at the fiber-matrix level, which are of interest nowadays due to the increasing need for

improved micromechanics-based models. Neither the structural scale (i. e. the scale of the whole

composite structure), nor the layer-layer scale (often called meso-scale), which are relatively more

investigated, are not intended to be considered here. The main purpose of this paper is a consistent

numerical estimation of the local effects which cannot be considered within the framework of meso-

or macro-approaches. This includes phenomena occurring at the micro-scale (fiber-matrix scale)

due to the mentioned above interactions between single fibers with a matrix and with a hole. The
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formulation, which includes the mentioned above three types of bounds and incorporates not only

effects of a hole, but also the possibility of imperfect bonding without normal displacement discon-

tinuity, different instability modes, is based on and constitutes a substantial further development

of previous research [17, 19, 20] in the direction concerned.

2 General assumptions and theoretical basis of the model

2.1 Geometry and bonding conditions. Some possible bounds for failure

parameters.

The simplest 3D geometry enabling a prediction of the effects of holes and bonding imperfections

on local compressive stability of fibers in composites subjected to compression should evidently

include a long inclusion (a fiber) in a matrix and a cylindrical hole in the closest neighborhood.

We refer the considered medium to Lagrangian coordinates xi and make use as well of the local

Lagrangian coordinates (rq, θq, zq) (q = 1, 2), which are associated with the fiber and the hole

(Figs. 1, 2).

We assume that the inclusion (denoted henceforth by a superscript (1)) and the matrix (denoted

further by a superscript (2)) consist in the general case of two distinctly different elastic isotropic

materials with the mechanical constants E(1), ν(1), and E(2), ν(2), respectively. The matrix mate-

rial is supposed to be substantially softer then that of the inclusion

E(1)/E(2) = β � 1. (1)

Such a uniaxial compressive loading is considered that the shortenings of the fiber and matrix

along the axes zq are equal

ε
0(1)
zz = ε

0(2)
zz . (2)

We take into account the distinct difference in the properties of the fiber and the matrix and the

spatial character of the problem at the local scale. To do this, it is necessary to consider individually

the inclusion and the matrix with the necessity of satisfying some prescribed bonding conditions

between them. The conditions between the fiber and the matrix can be satisfied exactly in the

following two idealized cases, namely, when all force and displacement components are continuous
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at the interfacial surface (this formulation corresponds to a perfect or ideal bonding and provides

an upper bound for the case of an imperfect bonding at the interface) and when only normal

components of forces and displacements are continuous while shear force components in the fiber

and the matrix are equal to zero at the interface (considered as a lower bound). For the latter

case, denoting the assumption of a sliding contact at the interface Si without normal displacement

discontinuity (without crack opening), the necessary contact conditions hold

t
(2)
rz |Si

= t
(1)
rz |Si

= t
(2)
rθ |Si

= t
(1)
rθ |Si

= 0, t
(2)
rr |Si

= t
(1)
rr |Si

, u
(2)
r |Si

= u
(1)
r |Si

, (3)

where t
(q)
ij denote the components of the Kirchhoff stress tensor in the composite constituents.

For the perfect bonding the corresponding conditions hold

t
(2)
rz |Si

= t
(1)
rz |Si

, t
(2)
rθ |Si

= t
(1)
rθ |Si

, t
(2)
rr |Si

= t
(1)
rr |Si

, u
(2)
z |Si

= u
(1)
z |Si

,

u
(2)
θ |Si

= u
(1)
θ |Si

, u
(2)
r |Si

= u
(1)
r |Si

.

(4)

The conditions of zero forces at the hole’s internal surface Sh can be formulated as follows

Nit
(2)
ij |Sh

= 0, (5)

where Ni denote components of the normal unit to the surface Sh of the hole.

In case of a hole of a circular cross-section (Fig. 2), equations (5) give

t
(2)
rz |Sh

= t
(2)
rθ |Sh

= t
(2)
rr |Sh

= 0. (6)

Let psl
cr denote the critical value of the loading parameter p corresponding to condition (3) and pid

cr

to condition (4). Then, according to the physical sense, one should expect the following estimate

for the critical loading parameter pimp
cr , corresponding to the case of an interface with imperfections

consisting in part of the areas with conditions of the type (3) and in part of the areas with conditions

of the type (4)

psl
cr ≤ pimp

cr ≤ pid
cr

(7)
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Relation (7) means that if, at some parts of the interface, the matrix supports the fiber only by

means of stresses acting perpendicular to the surface and without the participation of the shear

stresses, this would lead to a reduced support in comparison to the cases where all interface stresses

participate.

A similar idealization of the problem formulation in two directions provides the following relatively

simple possibility of establishing lower and upper bounds for critical loads for a matrix with a

cylindrical hole of a noncircular cross-section (Fig. 1)

ph1
cr ≤ ph

cr ≤ ph2
cr , (8)

In (8) ph
cr denote the critical value of a loading parameter corresponding to the problem for a fiber

near a cylindrical hole of a non-circular cross section with the maximal dimension parameter of the

cross-section equal to Dh < ∞, ph1
cr denote the critical value of the loading parameter corresponding

to the case of a fiber near a cylindrical hole of a circular cross section of diameter equal to Dh, and

ph2
cr denote one of the two limiting cases δ/D → ∞, Dh/D = const or Dh/D → 0, δ/D = const. δ

denote the thickness of the spacing between the fiber-matrix interface and the surface of the hole,

and D is fiber diameter. In simple words, relation (8) would mean that a ”bigger” hole, as depicted

schematically with dashed lines in Fig. 1, would weaken the supporting capability of the matrix

and thus would reduce the critical compressive load, which seems to be in a good correspondence

with the evident physical sense.

We further formulate and solve a model problem, which is used for the determination of psl
cr, pid

cr

and ph2
cr , ph1

cr .

2.2 Characteristic equation for the model problem

Consider a 3D instability problem for a fiber of diameter D near a cylindrical hole of a circular

cross section of diameter Dh in an elastic matrix (Fig. 2). Assume that the fiber and the hole never

intersect or touch each other, and their axes are parallel. The fiber lie in the region r1 ≤ D/2, and

the hole in the region r2 ≤ Dh/2.

We suppose for simplicity ν(1) = ν(2) = ν. This leads immediately to a homogeneous precritical

states in the fiber and the matrix of the type
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σ
∗0(1)
zz �= 0, σ

∗0(2)
zz �= 0, σ

∗0(1)
zz �= σ

∗0(2)
zz ,

σ
∗0(1)
rr = 0, σ

∗0(1)
θθ = 0, σ

∗0(2)
rr = 0, σ

∗0(2)
θθ = 0,

ε
0(1)
rr = ε

0(1)
θθ , ε

0(2)
rr = ε

0(2)
θθ

(9)

After the linearization, the equilibrium equations in terms of displacement disturbances for a

homogeneous medium hold [21]

ωαijβ
∂2uj

∂xα∂xβ
= 0. (10)

Coefficients ωαijβ depend on the material properties and the precritical state. In the considered

problem formulation, these equations should be independently applied to both the matrix and the

inclusion.

Solutions of the equations (10) for precritical states like (9) can be represented [21] in the form

ur = 1
r

∂ψ
∂θ − ∂2χ

∂r∂z , uθ = −∂ψ
∂r − 1

r
∂2χ
∂θ∂z ,

uz = (ω1133 + ω1313)−1(ω1111∆1 + ω3113
∂2

∂z2 )χ; ∆1 = ∂2

∂r2 + 1
r

∂
∂r + 1

r2
∂2

∂θ2 ;

(11)

with

χ = ψ2 + ψ3, (∆1 + ζ2
j

∂2

∂z2
)ψj = 0, (j = 1, 2, 3). (12)

Coefficients ζ2
j (j = 1, 2, 3), which depend as well on the material parameters and the precritical

state, must be determined in the following way

ζ2
1 = ω3113ω

−1
1221, ζ2

2,3 = c ± (c2 − ω3333ω
−1
1111ω3113ω

−1
1331)

1/2,

2c ω1111ω1331 = ω1111ω3333 + ω1331ω3113 − ω3131ω1133(ω1313 + ω3311).

(13)

It is necessary to calculate the minimal value of the loading parameter for which equations (12),

applied separately to the matrix and the inclusion, have nontrivial solutions ψ
(q)
j , (q = 1, 2, j =

1, 2, 3), describing a possible stability loss form of a fiber near a hole. These solutions should satisfy

conditions (3) and (6), or (4) and (6), in dependence on the considered case, and attenuate while

moving away from the fiber and the hole
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u
(2)
r → 0, u

(2)
θ → 0, u

(2)
z → 0 (r1 → ∞). (14)

The geometry of the problem for a fiber near a circular cylindrical hole has a plane of symmetry,

namely the plane containing the axes of the fiber and the hole. Therefore in this problem for-

mulation one can, theoretically speaking, consider separately the following two types of possible

stability loss forms (s.l.f.s): symmetric with respect to this plane ones, further referred as s.l.f.s

of the first type, and s.l.f.s without any symmetry with respect to this plane, further referred as

s.l.f.s of the second type.

Functions ψ
(1)
j for the fiber corresponding to the s.l.f.s of the first type can be represented as follows

ψ
(1)
1 = γ sin γz

∑∞
n=1 A11

n,1In(ζ(1)
1 γr1) sin nθ1,

ψ
(1)
s = cos γz

∑∞
n=0 A11

n,sIn(ζ(1)
s γr1) cos nθ1, γ = πl−1, s = 2, 3.

(15)

Corresponding functions ψ
(2)
j for the matrix should have the form

ψ
(2)
1 = γ sin γz

∑2
q=1

∑∞
n=1 A2q

n,1Kn(ζ(2)
1 γrq) sin nθq,

ψ
(2)
s = cos γz

∑2
q=1

∑∞
n=0 A2q

n,sKn(ζ(2)
s γrq) cos nθq, s = 2, 3.

(16)

Solutions for the s.l.f.s of the second type are constructed similarly. In (15) and (16) l denote the

length of the half-wave of the s.l.f., In(x) and Kn(x) denote the modified Bessel functions and

Macdonald functions, respectively.

Solutions for the matrix must then be represented in each of the coordinate systems (rq, θq, zq)

and satisfy, together with the solutions for the fiber, the conditions (3) and (6), or (4) and (6),

depending on the considered case. After a change of variables

X11
n,j = A11

n,jIn(ζ(1)
j γR), X21

n,j = A21
n,jKn(ζ(2)

j γR),

X11
0,s−1 = A11

0,sI0(ζ
(1)
s γR), X21

0,s−1 = A21
0,sK0(ζ

(2)
s γR), R = D/2,

(n = 1, 2, ...∞; j = 1, 2, 3; s = 2, 3),

(17)

and a similar change of the other unknown constants involved in the solutions, we obtain an infinite

homogeneous system of algebraic equations in the matrix form
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B2
αkX21

k + B1
αkX11

k +
∑∞

n=0 QαknX22
n = 0,

B2
vkX22

k +
∑∞

n=0 QvknX21
n = 0, (α = 1, 2; v = 3; k = 0, 1, 2, ...∞).

(18)

In (18) X11
n , X2q

n denote column vectors of the unknown constants.

The obtained infinite homogeneous systems of algebraic equations are then reduced to the canonical

form

X21
k +

∑∞
n=0 M1knX22

n = 0, X22
k +

∑∞
n=0 M2knX21

n = 0, (19)

where
M1kn = [B2

2k − B1
2k(B1

1k)−1B2
1k]−1[Q2kn − B1

2k(B1
1k)−1Q1kn],

M2kn = (B2
3k)−1Q3kn.

(20)

One derives subsequently characteristic equations in the form

∆µ(p, κ, β, ν, δ/D,Dh/D) = 0, (21)

which include infinite determinants in their left-hand sides and must be numerically solved. In (21)

κ and p denote the wave formation and loading parameters, respectively. They can be selected as

follows

p = −ε
0(1)
zz = −ε

0(2)
zz , κ = κ(1) = κ(2) = πD/(2l) (22)

In (21) value µ = 1 corresponds to s.l.f.s of the first type, while µ = 2 to s.l.f.s of the second type.

3 Numerical results

3.1 On the numerical procedure and its convergence

We have to calculate functions pi = pi(κ) for fixed values of the initial parameters of the problem

and then minimize the obtained results to determine critical loads. Therefore, the critical value

of p, corresponding to the critical stability loss form of a fiber near a hole for given values of

β = E(1)/E(2), ν, Dh/D and δ/D, is determined according to the following equations
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pmi = min
κ�=0

pi(κ), pcr = min
i

(pmi) (23)

In the numerical solution of the problem we replace the infinite determinants by determinants of a

certain finite size. This can substantiated by the fact that the obtained infinite determinants are

of the normal type.

To prove this we use the equivalence relationships in the form

In(x) ∼ 1
n! (

x
2 )n, Kn(x) ∼ (n−1)!

2 (x
2 )−n, n → ∞ (24)

and consider a series composed of expressions of the type

C1k
η (n+k−1)!(ζ

(2)
j

γD/2)k(ζ
(2)
j

γDh/2)n

(n−1)!k!(ζ
(2)
j

γ/2)k+n(2δ+D+Dh)k+n
(25)

This series can be used as a majorizing series for the series

∑∞
k=0

∑∞
n=0

∑3
i=1

∑3
j=1 | Mqkn,ij |, (q = 1, 2), (26)

where Mqkn,ij denote elements of the matrix appearing in the canonical form (19), (20) of the

obtained infinite systems of algebraic equations, Ck denote sufficiently large positive constants,

and η is a natural number.

The value of (25) is less than

C2k
η(

D

(D + δ)
)k(

Dh

(Dh + δ)
)n (27)

Series composed of expressions of the type (27) converge by virtue of the D’Alembert limit criterion.

The latter implies that the aforementioned numerical procedure must converge.

Table 1 demonstrates the practical convergence of the numerical procedure employed. In this

Table, a comparison of the values of pid
cr, calculated with ν = 0.3; β = 200; Dh/D = 1, 2, 4,

δ/D = 0.15, 0.50 and different dimensions N of the truncated determinant of the system (18), is

presented. Here and henceforth, the superscript or abbreviation id denotes the correspondence of

the calculated solutions to the conditions (4), while the superscript sl will denote the case (3).

Table 2 presents results on the practical convergence of the numerical procedure while calculating

the values of psl
cr. The convergence is even better, as δ/D increase and Dh/D decrease. The results

provided demonstrate a good practical convergence of the procedure proposed.
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3.2 A numerical estimation of the effects of a hole

In order to estimate numerically the effects of a cylindrical hole of non-circular cross-section on

stability of a fiber in a matrix we calculate the values ph1
cr and ph2

cr and use them as a lower and

an upper bounds according to (8). The calculations are carried out for β = 200 and ν = 0.3.

Fig. 3 presents solutions of the characteristic equation in the form of dependencies of the loading

parameter pid on the wave formation parameter κ, calculated for the s.l.f.s of the first type with

Dh/D = 4 and different values of δ/D. Calculated curves for the s.l.f.s of the second type, which

looked similar to the displayed curves, but corresponded to somewhat higher loading levels, were

not depicted in Fig. 3, in order to keep the Figure understandable. Each point on the curves

presented correspond to a certain instability mode with a half-wave l = πD/(2κ). The minima

of the curves can be considered as the critical parameters pid
cr leading to the stability loss with a

half-wave lcr = πD/(2κcr).

A comparison of the values of pid
mi corresponding to minima of the functions pid = pid(κ) calculated

in the presence of a perfect bonding between the fiber and the matrix with allowance for the effects

of a hole of a diameter Dh = 4D for the cases of a s.l.f. of the fiber of the first type (denoted as

values pid
m1) and of the second type (values pid

m2) is given in Fig. 4. This comparison shows that the

s.l.f. of the fiber of the first type is more likely to occur because it corresponds to smaller loads.

Values pid
m1 can therefore be considered as critical for the case of a perfect bonding between the

fiber and the matrix.

The critical values of the loading parameter pid
cr, calculated in dependence on the dimensionless

diameter of the cylindrical hole Dh/D for the dimensionless spacing between the fiber and the

hole δ/D equal to 0.15, 0.50, 1.00, 1.50 for the case of a perfect fiber-matrix bonding are plotted in

Fig. 5. According to inequalities (8), these calculated values can be used as lower bounds ph1,id
cr

for critical loads for a matrix with a cylindrical hole of a noncircular cross-section (Fig. 1), in the

presence of a perfect fiber-matrix bonding. The dashed curve in Fig. 5 denotes the corresponding

upper bound ph2,id
cr for critical loads, again according to (8). At the same time, the results presented

in Fig. 5 constitute upper bounds pid
cr for the estimate (7).

Similar results for a fiber near a cylindrical hole, but this time corresponding to the case of a

sliding contact between the fiber and the matrix (values psl
cr), calculated in dependence on the

dimensionless diameter of the hole Dh/D for different values of the dimensionless spacing between

the fiber and the hole (δ/D = 0.15, 0.50, 1.00, 1.50) are given in Fig. 6. With account of (8), these

results can be used as lower bounds ph1,sl
cr for critical loads for a fiber in a matrix with a cylindrical
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hole of a noncircular cross-section (Fig. 1) in the presence of a sliding contact between the fiber

and the matrix. Again, the dashed curve in Fig. 6 denotes the corresponding upper bound ph2,sl
cr

for critical loads, according to (8). On the other hand, the numerical results presented in Fig. 6

constitute lower bounds psl
cr employed in the estimate (7).

Following results concern a quantitative estimation of the possible effects of a hole on the critical

values of the loading parameter by means of calculating the coefficient Cho = (ph2
cr /ph1

cr − 1). This

coefficient denotes to what extent the calculated values of ph2
cr can be higher than ph1

cr . The effects of

a cylindrical hole of a noncircular cross-section (Fig. 1), depending on its geometrical parameters,

can lead to some intermediate value between 0 and Cho, approaching in the most unfavorable

cases the maximal value of Cho. Fig. 7 presents the values of the parameter Cid
ho versus the

dimensionless diameter of the hole Dh/D calculated for the case of an ideal fiber-matrix bonding

with δ/D = 0.15, 0.5, 1.0, 1.5. Similar results for Csl
ho for the case of a sliding contact between the

fiber and the matrix are given in Fig. 8.

3.3 A numerical estimation of the effects of adhesion imperfections

In order to estimate the effects of adhesion imperfections one has to calculate the values psl
cr and

compare them with the corresponding values pid
cr for the same prescribed set of geometrical and

mechanical parameters of the problem. The mentioned values can then used as a lower and an

upper bounds for the case of an interface with bonding imperfections according to (7). Solutions

of characteristic equations (21) in form of calculated dependencies of the loading parameter p (pid

and psl) on the wave formation parameter κ with ν = 0.3, β = 200 and δ/D = 0.15, 1.5, in the

presence of a perfect bonding and a sliding contact between the fiber and the matrix, are presented

in Fig. 9. The depicted dependencies correspond to the cases of a s.l.f. of the fiber of the first

type, which provided smaller values of p.

For the case of a sliding contact between the fiber and the matrix, we present (Fig. 10) results of a

comparison of the values of psl
mi, corresponding to minima of the functions psl

i = psl
i (κ), calculated

for the s.l.f.s of the fiber in the matrix of the first type (values psl
m1) and of the second type (values

psl
m2), with allowance for the effects of a hole of a diameter Dh = 4D. This comparison shows that,

in the presence of a sliding contact too, the s.l.f.s of the fiber of the first type correspond to smaller

loads, and the values psl
m1 depicted in Fig. 10 can be considered as critical for the case considered,

i. e. psl
cr = psl

m1.

In order to quantitatively evaluate the possible influence of bonding imperfections we calculate the

12



coefficient Cad = (pid
cr/psl

cr − 1) denoting to what extent the calculated values of pid
cr can be higher

than psl
cr. The effects of bonding imperfections can lead to some intermediate value between 0

and Cad, approaching in the most unfavorable cases the maximal value of Cad. Fig. 11 presents

the values of the parameter Cad versus the dimensionless diameter of the cylindrical hole Dh/D

calculated with different values of the dimensionless spacing between the fiber and the hole δ/D.

Fig. 12 plots as well functions Cad = Cad(κ), where Cad = (pid
cr(κ)/psl

cr(κ) − 1) calculated for

δ/D = 0.15, 0.5, 1.5,→ ∞.

3.4 On the joint effects of a hole and adhesion imperfections

One can estimate the range of the joint effects of a hole and adhesion imperfections on stability of

a fiber in a matrix by means of comparing an ’ideal’ case of a homogeneous matrix without holes

in the presence of a perfect bonding at the fiber-matrix interface with a case of a matrix weakened

by a hole in the presence of a sliding contact at the interface. The ’ideal’ case correspond to one

of the two limiting cases δ/D → ∞, Dh/D = const or Dh/D → 0, δ/D = const, which provide

equal results within the framework of the discussed numerical model. Dependencies of the loading

parameter p on the wave formation parameter κ for the aforementioned ’ideal’ case (denoted as

id, δ/D → ∞) as well as for a fiber in a matrix with a hole in the presence of a sliding contact

at the interface (denoted as sl, with δ/D < ∞) calculated with Dh/D = 4 and different values of

δ/D are presented in Fig. 13. All depicted graphs correspond to the s.l.f.s of the first type, which

had some advantage (corresponded to lower load levels) as compared with the s.l.f.s of the second

type.

We introduce as a quantitative measure of mentioned above joint effects a parameter Cad+ho =

(ph2,id
cr /ph1,sl

cr − 1). This coefficient indicates to what extent the calculated values of ph2,id
cr for

the ’ideal’ case of a homogeneous matrix without defects can be higher than the value ph1,sl
cr ,

corresponding to case of a fiber in a matrix with a hole, in the presence of a sliding contact

at the interface. The effects of a cylindrical hole of a noncircular cross-section (like depicted in

Fig. 1) combined with the influence of the bonding imperfections without normal displacement

discontinuity at the very beginning of the stability loss, will depend on the shape of its cross-

section and can lead to some intermediate value between 0 and Cad+ho, approaching in the most

unfavorable cases the maximal value of Cad+ho. Fig. 14 presents these maximal values Cad+ho in

dependence on the dimensionless diameter of the hole Dh/D.
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4 Conclusions

In this paper, a numerical model is developed for the quantitative estimation of the effects of

a cylindrical hole and an imperfect fiber-matrix bonding on stability of a system fiber-matrix

subjected to compression. The model presents a procedure for determining three types of bounds

for critical loading parameters, including lower and upper bounds for the case of a fiber in an

elastic matrix near a cylindrical hole of a non-circular cross-section, bounds for the case of some

adhesion imperfections at the fiber-matrix interface without normal displacement discontinuity, as

well as for a somewhat more general case in which both types of the defects are present. The model

is based on individual consideration of the fiber and the matrix with the necessity of satisfying

certain idealized bonding conditions between them. It takes this way into account the distinct

difference in the properties of the fiber and the matrix and the spatial character of the problem at

the microlevel. The bonding conditions between the fiber and the matrix are satisfied numerically

with a controlled accuracy within the framework of the model discussed in two cases, namely, when

all force and displacement components are continuous at the interfacial surface (this formulation is

assumed to provide an upper bound for the case of an imperfect bonding at the interface) and when

only normal components of forces and displacements are continuous while shear force components

equal to zero at the interface both in the fiber and the matrix (considered as a lower bound for the

cases without crack opening at the very beginning of stability loss). One of the simply realizable

3D models for a hole in the matrix, having a circular cross section with the axis parallel to the

fiber axis, is employed in the paper for the estimation of the hole effects on the stability of situated

nearby fibers with damaged and ”ideal” fiber-matrix interface.
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Table 1: Practical convergence for pid
cr

Dh/D 1 2 4

δ/D N N

0.15 24 0.0538 0.0507 42 0.0469

33 0.0537 0.0500 51 0.0466

42 0.0537 0.0499 60 0.0465

51 0.0537 0.0499 69 0.0465

0.50 15 0.0571 0.0554 33 0.0500

24 0.0556 0.0530 42 0.0495

33 0.0555 0.0524 51 0.0493

42 0.0555 0.0523 60 0.0492

51 0.0555 0.0523 69 0.0492
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Table 2: Practical convergence for psl
cr

Dh/D 1 2 4

δ/D N N

0.15 24 0.0452 0.0434 33 0.0412

33 0.0447 0.0422 42 0.0402

42 0.0447 0.0418 51 0.0397

51 0.0447 0.0417 60 0.0394

60 0.0447 0.0417 69 0.0393

0.50 15 0.0485 0.0474 33 0.0429

24 0.0468 0.0451 42 0.0423

33 0.0467 0.0444 51 0.0420

42 0.0466 0.0442 60 0.0419

51 0.0466 0.0441 69 0.0418
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Figure 1: A long inclusion (a fiber) in a matrix and a hole in the closest neighborhood.
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Figure 2: A model problem for a fiber near a cylindrical hole of a circular cross-section.
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Figure 3: Dependencies of the parameter pid on the wave formation parameter κ.

Figure 4: Values of pid
mi calculated in the presence of a perfect bonding between the fiber and the

matrix with allowance for the effects of a hole of a diameter Dh = 4D for the cases of a s.l.f. of

the fiber of the first type (denoted as values pid
m1) and of the second type (values pid

m2).
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Figure 5: Parameter pid
cr versus Dh/D for different values of the dimensionless spacing between the

fiber and the hole δ/D (the case of a perfect fiber-matrix bonding).

Figure 6: Parameter psl
cr versus Dh/D for different values of the dimensionless spacing between the

fiber and the hole δ/D (the case of a sliding contact between the fiber and the matrix).
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Figure 7: Values of the parameter Cid
ho versus the dimensionless diameter of the hole Dh/D calcu-

lated for the case of an ideal fiber-matrix bonding.

Figure 8: Values of the parameter Csl
ho versus the dimensionless diameter of the hole Dh/D calcu-

lated for the case of a sliding contact between the fiber and the matrix.
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Figure 9: Dependencies of the parameter p (pid and psl) on the wave formation parameter κ for

some values of δ/D, and two different types of interface conditions (a perfect bonding and a sliding

contact between the fiber and the matrix).

Figure 10: Values of psl
mi calculated in the presence of a sliding contact between the fiber and the

matrix with allowance for the effects of a hole of a diameter Dh = 4D for the s.l.f.s of the fiber in

the matrix of the first type (values psl
m1) and of the second type (values psl

m2).
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Figure 11: Parameter Cad versus the dimensionless diameter of the cylindrical hole Dh/D calcu-

lated with different values of the dimensionless spacing between the fiber and the hole δ/D.

Figure 12: Values of the parameter Cad as a function of the wave formation parameter κ.
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Figure 13: Loading parameter p versus κ for the ’ideal’ case of a fiber in a homogeneous matrix

without holes in the presence of a perfect bonding at the fiber-matrix interfaces in comparison

with the cases of a fiber in a matrix weakened by a hole in the presence of a sliding contact at the

interface.

Figure 14: Values Cad+ho versus the dimensionless diameter of the hole Dh/D.
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