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Abstract. This paper presents a finite element method to simulate growing de-
laminations in composite structures. The delamination process, using an inelastic
material law with softening, takes place within an interface layer having a small,
but non–vanishing thickness. A stress criterion is used to detect the critical points.
To prevent mesh dependent solutions a regularization technique is applied. The
artificial viscosity leads to corresponding stiffness matrices which guarantee stable
equilibrium iterations. The essential material parameter which describes the delam-
ination process is the critical energy release rate. The finite element calculations
document the robustness and effectivity of the developed model. Extensive parame-
ter studies are performed to show the influence of the introduced geometrical and
material quantities.
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1 INTRODUCTION

One of the most dangerous failure modes in composite laminates is delamination.
The loss of strength and stiffness may reduce the lifetime in a significant way. To
utilize the full potential of composites it is necessary to analyze initiation and growth
of delamination which may be a basis of appropriate construction measures.

Due to the complexity of the underlying mathematical model, usually numerical
procedures are applied to compute increasing delaminations. The so–called first–ply
failure analysis yields the location where damage starts. Several authors use stress–
based criteria to predict different failure modes. If the criterion is not fulfilled
stiffness parameters are reduced or set to zero. The procedure may not work if
the stress field is singular. Another disadvantage is a lack of robustness within the
equilibrium iterations. This holds especially for geometrical nonlinear calculations.

Other authors use a fracture mechanics approach. When the energy related to the
newly opened crack-surface exceeds a critical value, the crack extends. In so-called
virtual crack-extension or crack-closure methods the energy release rate is calculated
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using the nodal forces and displacements within the finite element method, see
e.g. Wang et.al.1 A considerable number of iterations may be necessary until a
configuration is found where equilibrium and delamination criterion are fulfilled.

In some papers interface elements with double nodes are used to map the geo-
metric discontinuities arising within the delamination process. Schellekens and de
Borst2 developed plane strain elements and associated interface elements with cu-
bic interpolation functions. Crisfield3 modified the concept along with eight–node
quadrilateral plane strain elements. In their approach the constitutive equations are
formulated directly in terms of crack opening displacements.

The goal of this paper is to present an effective finite element tool for the nu-
merical analysis of delaminations in layered composites. The essential features and
novel aspects are summarized as follows.

To account for the three–dimensional stress state, which typically occurs in com-
posite structures, the discretization is performed using hexahedral elements. Due
to special interpolation techniques based on mixed variational principles the ele-
ments are able to predict the stress state even for very thin structures. Applying
an assumed strain method (ANS), the transverse shear strains are independently
interpolated, see e.g. Bathe and Dvorkin.5 Furthermore, the thickness strains are
approximated according to the paper of Betsch and Stein.6 The membrane be-
haviour is improved by applying the enhanced assumed strain method (EAS) with
five parameters. The variational formulation and detailed finite element equations
of the ANS–EAS5–element are given in Klinkel, Gruttmann and Wagner.4

Delamination of layered composites usually occurs together with damage within
the plies. The complicated interaction between the different failure modes is not
considered in the paper. Within the present model delamination takes place in
interface layers with small but not vanishing thickness. The interlaminar stresses
are determined using an inelastic material law with softening. The slope of the
softening curve is determined by the critical energy release rate, the thickness of
the interface layer and the tensile strength of the laminate in thickness direction.
Complete delamination is defined if the newly opened surface is free of stresses. To
avoid mesh dependent solutions a regularization technique is applied.

2 DELAMINATION MODEL

2.1 Interface layer

Fig. 1 shows a finite element discretization of a plate strip using eight–node ele-
ments. The interface layers, with thickness ht, are positioned in those regions where
delamination is expected. Our numerical investigations showed that the behaviour
of the global composite structure remains practically unaltered for thickness ratios
of ht/h ≤ 10−2, where h denotes the thickness of the total laminate, see Fig. 2.
Using a material formulation, the variational equations are written in terms of the
Second Piola–Kirchhoff stress tensor S and the work conjugate Green–Lagrangian
strain tensor E. The tensor components refer to different basis systems, where the
transformations are specified in Sprenger, Gruttmann and Wagner.7

In this paper the criterion of Hashin8 in terms of the interlaminar normal stresses
S33 and shear stresses S13 and S23 is used to predict the location where delamination
occurs. Introducing a local Cartesian coordinate system one obtains
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Figure 1: Plate strip with delaminated layer and interface element
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Figure 2: Interface layer and softening function
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Here, Z0 and R0 denote the tensile strength in thickness direction and the shear
strength of the laminate, respectively. The criterion can only be formulated in
terms of Second Piola Kirchhoff stresses, if the application is restricted to small
deformations. Otherwise the transformation to the Cauchy stress tensor σ has to
be considered.

Furthermore, linear softening behaviour according to Fig. 2 is introduced

Z(α) = Z0 (1 − µα) ≥ 0 with µ > 0 , (2)

where the internal variable α denotes the equivalent inelastic strain. The critical
energy release Gc rate corresponds to the area under the softening curve multiplied
with ht, since in the present model the energy is dissipated within the interface layer
of thickness ht, thus

Gc =
Z2

0ht

2
(

1

E3

+
1

Z0µ
) , (3)

where E3 denotes the elastic modulus in thickness direction. If the elastic defor-
mations are negligible, which means that the first term in the sum cancels out, the
softening parameter µ can easily be determined from (3) as

µ =
Z0 ht

2 Gc

. (4)

Delamination is defined, when the absolute value of the interlaminar stress vector
vanishes.
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2.2 The rate–independent plasticity model

With the assumption of small strains the Green–Lagrange strain tensor E and
the associated rate can be additively decomposed in an elastic and an inelastic part.
The elastic part follows from the linear constitutive law. The inelastic strain rates
and the evolution law for the equivalent plastic strains are given with the inelastic
multiplier λ̇. Summarizing, the rate–independent plasticity model is written as

Ė = Ėel + Ėin ,

Ėel = C−1 Ṡ ,

Ėin = Ėpl = λ̇N ,

α̇ = λ̇ .

(5)

The constitutive tensor C in terms of the elasticity constants Ei, Gij and νij is
described in Sprenger, Gruttmann and Wagner.7 Furthermore, N denotes the gra-
dient of the yield function F (S, α). The fracture criterion (1) is reformulated and
extended by the softening function (2) as follows

F (S, α) = g(S) − Z(α) (6)

with

g(S) =
√

S · AS , A = Diag

[
0, 0, 1, 0,

(
Z0

R0

)2

,
(

Z0

R0

)2
]

. (7)

The components of A refer to a local Cartesian coordinate system. For α = 0 eq.
(6) is another representation of (1). The loading–unloading conditions must hold

λ̇ ≥ 0 , F ≤ 0 , λ̇F = 0 . (8)

In case of loading with λ̇ > 0 the rate equations (5) considering N = AS/g
are approximately time–integrated using a backward Euler integration algorithm.
Within a time step tn+1 = tn + ∆t one obtains, after some algebraic manipulations,
the stress tensor and the parameter α

Sn+1 =

[
C−1 +

λ

Z(αn+1)
A

]−1 [
En+1 − Epl

n

]
= P Etr ,

αn+1 = αn + λ .

(9)

Here, the notation λ := ∆tλ̇n+1, Sn+1 = S(tn+1) and αn+1 = α(tn+1) is used.
The linearization of the stress tensor yields the consistent tangent operator

D̄ = P − PN ⊗ PN

N · PN + H
, H =

Z ′

1 − λZ′
Z

, (10)

with Z ′ := dZ/dα. If for Z > 0 the softening parameter µ increases certain values,
negative diagonal terms in D̄ occur. In this case the global iteration process to solve
the equilibrium equations becomes unstable. For Z = 0 the expressions for P and
H are undefined. This can be avoided introducing a tolerance.
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2.3 Viscoplastic regularization

To prevent the described numerical instabilities, we use a viscoplastic regulariza-
tion technique. The strain rates are introduced according to the approach of Duvaut
and Lions9

Ėin = Ėvp =
1

η
C−1

(
S − S̄

)
,

α̇ = −1

η
(α − ᾱ) ,

(11)

where η denotes the normalized viscosity parameter. In the present case η is a purely
numerical parameter which has the meaning of a relaxation time. The stresses S̄
and equivalent plastic strains ᾱ denote the solutions of the rate–independent theory.

Substitution of eq. (5)2 and (11)1 into eq. (5)1 yields another representation of
(11)

Ṡ +
1

η
S = CĖ +

1

η
S̄ ,

α̇ +
1

η
α =

1

η
ᾱ .

(12)

The solutions of the homogeneous differential equations are obtained analytically.
The inhomogeneous part is solved approximately using a backward Euler integration
algorithm. Introducing Sn = S(tn), δ = ∆t/η and β = exp(−δ) we end up with

Sn+1 = β Sn + (1 − β) S̄n+1 +
1 − β

δ
C∆E ,

αn+1 = β αn + (1 − β) ᾱn+1 .
(13)

The viscoplastic tangent matrix follows immediately with

D =
dS

dE
=

1 − β

δ
C + (1 − β) D̄ , (14)

The first term in (14) leads to positive diagonal entries in the viscoplastic tangent
matrix, where the factor δ implies that with decreasing η the time increment ∆t has
to be reduced, to obtain the desired effect. The symmetric matrix D is necessary to
setup the tangent stiffness matrix for the equilibrium iteration.

3 EXAMPLES

3.1 Double cantilever beam test

As a the first example we investigate a double cantilever beam with a given
initial delamination. The resultant load q · b amounts to 1.0 kN . We compare
our numerical results with experimental investigations of Aliyu and Daniel.10 The
authors determined a critical energy release rate Gc = 0.222 N/mm using a crack
opening velocity of ẇ = 0.85 mm/s. The used material properties for an AS-4/3501-
6 graphite epoxy are summarized in Fig. 3. The fiber direction within the whole
structure corresponds to the global x–direction .

Due to the symmetry of the structure and loading conditions, only a quarter of the
beam has to be discretized. We use two elements in y–direction and three elements in
z–direction respectively. The number of elements n1 −n4 in x–direction can be seen
in Fig. 3. The thickness of the interface layer is chosen as ht = h/100. The energy
release rate is the energy of a body with a certain volume referring to the newly
opened delamination area. Since in the present case only the lower part of the beam
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Figure 3: Double cantilever beam: geometry, material data and finite element mesh

is discretized, the rate of the energy refers to the corresponding volume fraction, and
thus it must be halved. In contrast to that the symmetry condition in y–direction
does not influence µ. In this case the ratio of the energy and the newly opened
delamination area remains constant. Thus, the parameter µ is determined via (4)
as µ = 7.1. The present analysis is performed controlling the tip displacement. In
Fig. 4 the load λ qb is depicted versus the crack opening displacement w, where w
denotes the total mutual tip displacement of the beam. The crack opening process
starts when the transverse tensile strength Z0 is exceeded. In the softening range we
notice very good agreement of our results with the experiments, especially for large
displacements w. The influence of mesh refinement can be seen for three different
meshes with n4 = 268, 570, 860 elements.
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Figure 4: Double cantilever beam, load deflection curves

In Fig. 5 the normal stresses S33 are plotted in the x-z-plane for different crack
opening displacements. The plots show the concentration of the stresses in front of
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the crack tip. The newly opened delamination surface is completely free of stresses.
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Figure 5: Normal stresses S33 in x-z-plane for different crack opening displacements

3.2 Plate with initial circular delamination

The next example is a plate consisting of 16 layers with layer thickness hL =
0.12 mm, and stacking sequence [0◦/0◦/ + 45◦/0◦/0◦/ − 45◦/0◦/90◦]S. A circular
delamination is given between layer 14 and 15, see Fig. 6. Cochelin et.al.12 investi-
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Figure 6: Plate with circular delamination: geometry and finite element mesh

gated the stability behaviour of this structure with nongrowing delaminations. The
plate is simply supported along the edges. The geometrical data and the material
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data for an AS/3501 graphite epoxy composite are given as follows:

E1 = 135000 N/mm2 G12 = 5150 N/mm2

E2 = 8500 N/mm2 G23 = 5150 N/mm2

ν12 = 0.317
Z0 = 51.7 N/mm2 R0 = 91.0 N/mm2

ht = 0.005 mm F = 30 N/mm

(15)

Due to the fibre angles with ±45◦ the structure is not symmetric with respect to
the x-axis and y–axis, respectively. To reduce the computing effort this fact is
ignored in the present analysis. The problem of propagating delaminations can in
principle be studied when discretizing only one quarter of the plate, see Fig. 6.
The interface elements are positioned between the layers 14 and 15 only in the
fine discretized annular space. In thickness direction several physical layers are
summarized within one element layer. This has to be considered when performing
the numerical integration in thickness direction.4 The nonlinear calculations are
performed controlling the load parameter λ. First, we analyze a ”perfect” plate
without delamination and thus without the interface layer. Due to the symmetric
layup the plate is loaded as a pure membrane. With increasing axial deformation
a bifurcation point is found. A switch to the secondary solution path is possible
by a perturbation with the first eigenvector. Next, we analyze the behaviour of the
plate with artificial and non growing delamination. In this case one obtains a load
displacement curve which for large displacements approaches the secondary solution
path of the perfect plate. Furthermore the solutions with increasing delamination
zone are depicted in Fig. 7. The influence of time step ∆t is negligible. Delamination
starts at the coordinates (x = 0 mm, y = 5 mm) and propagates along the inner
circle. The whole process is depicted in Fig. 8.

0
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1 2

20

40

60
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VorgegebeneDelaminationohneWachstum

VorgegebeneDelamination,eta=0.58
VorgegebeneDelamination,eta=0.68
VorgegebeneDelamination,eta=0.78
VorgegebeneDelamination,eta=0.88

“perfect”

without growth

�t = 0.100
�t = 0.025

Figure 7: Load deflection curves of the plate

4 CONCLUSIONS

This paper presents a finite element method to simulate increasing delaminations
in composite structures. Interface layers are discretized using refined eight–node
hexahedrons. These elements have a small, but non–vanishing thickness and are

8



Friedrich Gruttmann, Werner Wagner

� = 42
� = 43

� = 41

� = 50 � = 80

� = 25 � = 35� = 20

� = 44

� = 0.7822

�t = 0.1
� = 0°

x

y

D [%]

0.
00

16
.7

25
.0

33
.3

41
.7

50
.0

58
.3

66
.7

75
.0

83
.3

91
.7

10
0

8.
33

Figure 8: Growing delamination zone

located in those regions where delaminations are expected. Within an inelastic
model, the delamination criterion of Hashin is extended to a yield criterion with
softening. Numerical instabilities are avoided by a viscoplastic regularization. The
viscosity parameter is determined automatically such that the critical energy release
rate is the essential material parameter. Detailed numerical calculations show the
effectivity, robustness and reliability of the developed delamination model.
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