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SUMMARY

In this paper a constitutive model for anisotropic finite strain plasticity, which considers the major

effects of the macroscopic behaviour of matrix-fibre materials, is presented. One of the most striking

feature of the model is its suitability for a numerical treatment. The matrix material is assumed to

be isotropic, the anisotropy is induced by the fibre material. The free energy function is additively

split into a part related to the matrix and in parts which correspond to the fibres. The deformation

gradient is multiplicatively decomposed into elastic and plastic parts. The principle of the maximum

plastic dissipation yields the evolution equations of the plastic variables for matrix and fibres. An

implicit integration algorithm for the fibre is proposed, which leads to the classical return-mapping

scheme. Some numerical examples demonstrate the anisotropic behaviour of the introduced material

model.

key words: Anisotropic plasticity, Finite strains, Material modelling, Fibre-Matrix material

1. INTRODUCTION

Anisotropic effects in the elastic-plastic deformation range may occur either due to oriented

internal structures, see e.g. [1], or to fibre matrix compositions. The paper is a contribution

to analyse fibre-matrix materials using a simple constitutive model which capture the

characteristic macroscopic behaviour of the anisotropic material. An accurate modelling is

important for the design of materials like e. g. fibrous Boron-Aluminium composites [2] or

fibre reinforced composites [3].

The description of anisotropic materials is very often based on averaged quantities. That

is, the anisotropic behaviour of the material is captured in an averaged sense. The elasticity
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tensor is the most profound example of such description, where two tensorial (second order)

quantities are related through an anisotropic fourth order tensor. However, very often tensor-

valued relationships can be derived from a scalar function (energy, flow rule), which means

that the scalar functions themselves are to be described in an anisotropic manner, that takes

possible material symmetries into account. The mathematical means for this is the notion

of structural tensors, which is a general tool for describing certain classes of anisotropy and

encompasses well established models of elastic anisotropy and anisotropic flow rules, such as the

orthotropic yield condition early published in the classical work of Hill [4]. Structural tensors

are dyadic products of the privileged directions of the material. Essentially, the anisotropic

function under consideration (internal energy, flow rule) is formulated in terms of the so-called

integrity basis, which consists of invariants of the main variable (strain or stress) together

with invariants of the tensor products of the main variable with the structural tensors. The

resulting function is supposed to describe the average behaviour of the system, irrespective of

the physical nature of anisotropy itself which may be a result of the crystal structure of the

material or a result of the fact that the material is composed of different components such as

a matrix and fibres. As examples, anisotropic yield criteria are discussed e.g. in [5], [6], and

[7], to mention a few.

Recently a considerable effort has been devoted into the extension of isotropic finite strain

models of inelasticity to the anisotropic case. In this regard a clear distinction can be drawn

between models based on additive decompositions of suitable strain measures as in [8], [9], or

[10], and those which are based on the multiplicative decomposition of the deformation gradient

into elastic and inelastic parts such as in [11], [12], [13], or [14]. An important issue in relation to

these different models is the effort to be considered with regard to numerical implementations.
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In fact, anisotropic schemes based on averaged description are very involved. Of the above

mentioned, those based on the multiplicative decomposition lead to especially involved and

tedious schemes and the numerical effort to obtain solutions can be very considerable.

This paper is concerned with a simple constitutive model for fibre reinforced material at

finite elastic-plastic strains. The material is assumed to consist out of a matrix and one or

more fibres. The model is characterized by its conceptual simplicity as well as its numerical

efficiency. The numerical effort essentially can be compared with that known from purely

isotropic computations. The main idea is to consider the continuum as superimposed of the

matrix and further one-dimensional continua each of them represent one family of fibres. The

fibres are assumed to be equally distributed over the body. The different continua are linked

by the kinematic constraint that the deformation gradient applies to all of them. The elastic-

plastic model is based on the multiplicative decomposition of the deformation gradient into an

elastic and plastic part, for both the matrix and the fibre. The free energy function is additively

decomposed into an isotropic part for the matrix and into parts for the fibres, which induce

the anisotropic behaviour.

The greatest advantage of such formulation, as compared to an averaged description, lies

in the possibility of treating each constituent separately. While the matrix can be considered

isotropic and well established schemes can be applied, a specific formulation must be developed

for the one-dimensional continua which are supposed to capture the behaviour of the fibres.

In fact, it turns out that a simple formulation can be found rendering the whole approach

extremely efficient. The essential features and novel aspects of the presented formulation are

summarized as follows:

i) The additive split of the free energy function leads to separated constitutive equations
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for the matrix and the fibres. For the matrix we use an isotropic elastic-plastic model

for large strains, which was proposed in [15].

ii) For the fibre a one-dimensional material model is introduced. The governing equations

are derived with the principle of maximum dissipation and the yield condition as a

constraint.

iii) The introduced constitutive model is able to consider various fibres with arbitrary

directions. A formulation of an anisotropic yield condition, which captures all material

symmetries, is not necessary.

iv) An implicit integration method yields a scalar-valued return mapping algorithm for each

fibre, which, along with a consistent tangent modulus, is very efficient for numerical

implementation.

v) To obtain quadratic convergence in the frame of the Newton-Raphson method, the

consistent elastic-plastic tangent modulus for the fibre is derived. The tangent modulus

for the matrix material may be found in [16].

The paper is organized as follows: In Section 2 the anisotropic constitutive model is proposed.

First the kinematics of multiplicative elastoplasticity are summarized. The free energy function

is introduced. On this basis the elastic and plastic constitutive models are derived along

standard arguments in rational continuum mechanics. In Section 3 an implicit integration

algorithm for the rate independent plasticity formulation is presented. On this framework the

algorithmic elastic-plastic tangent modulus is derived. Finally, numerical examples in Section

4 demonstrate the anisotropic behaviour of the proposed model.
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2. ANISOTROPIC CONSTITUTIVE MODEL

2.1. Kinematics

Let the deformation φ(X, t) be a point map form the body B with X ∈ B to the actual

configuration Bt at the time t. The tangent to φ is denoted the deformation gradient

F (X) : TB → TBt. If X and x are the co-ordinates of the body B and the actual configuration

Bt, the deformation gradient is given by

F = GradX(x) . (1)

A fundamental assumption is now that the above kinematics applies to a body which exhibits

more then one constituent. The constituents differ not only with respect to their material

behaviour but in their geometry as well. In our specific case, we assume that one constituent

will always be an isotropic classical continuum. Each of the other constituents will be defined

as a continuum which deforms and carries loads only in one specific direction, the direction of

a corresponding family of fibres. Of such continua there will be as much as there are families

of fibres.

A multiplicative decomposition, which may be motivated by a micro-mechanical view of

plastic deformations, into an elastic part F e and a plastic part F p

F = F e
MF p

M = F e
F F p

F (2)

is assumed for the matrix, denoted with the index M , and for each fibre, denoted with the index

F . The well known multiplicative decomposition implies a stress free intermediate configuration

for the matrix and for each fibre. The time derivative of the deformation gradient reads

Ḟ = lF = FL , (3)
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where l and L denote the left and the right rate. For the plastic deformation we define a right

rate according to

Ḟ
p

M = F p
MLp

M , Ḟ
p

F = F p
F Lp

F . (4)

The following quantities of the right Cauchy-Green type are defined by

C = F T F , Ce
M = F e

M
T F e

M , Cp
M = F p

M
T
F p

M . (5)

For each fibre we introduce a structural tensor MF := vF ⊗ vF , where the vector vF is the

normalized direction of the fibre. With the assumption that the plastic deformations of the

fibre occur only in fibre direction

F p
F = λp MF , (6)

the right Cauchy-Green tensor reads

C = λp2MF F e
F

T F e
F MF . (7)

Therefore we define elastic and plastic right Cauchy-Green tenors of the fibre as

Ce
F =

1
λp2 MF CMF , Cp

F = λp2MF . (8)

2.2. Free energy function and dissipation

The free energy function is introduced by

Ψ = ΨM (Ce
M , ZM ) +

nF∑
F=1

ΨF (Ce
F , ZF ) , (9)

where nF is the total number of fibres. The quantities ZM , ZF are the internal plastic variables

for the matrix and a fibre. The localized form of the dissipation inequality for an isothermal

process reads

D = Ξ : L − ρ0M Ψ̇M −
nF∑

F=1

ρ0F Ψ̇F ≥ 0 . (10)
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Here ρ0M and ρ0F are the densities of the matrix and fibre materials in the reference

configuration and Ξ is the Mandel stress tensor, which is related to the Kirchhoff stress τ

and the 2nd-Piola-Kirchhoff stress S by Ξ = F T τF−T = CS, see e.g. Sansour and Kollmann

[17]. The rates of the free energy may be derived as follows:

Ċ
e

M =F p
M

−T
LT CF p

M
−1 + F p

M
−T

CLF p
M

−1

− F p
M

−T
Lp

M
T
CF p

M
−1 − F p

M
−T

CLp
MF p

M
−1

(11)

and

Ċ
e

F =
1

λp2 MF LT CMF +
1

λp2 MF CLMF − 2
λ̇p

λp2 MF CMF . (12)

Considering the definitions

ΞM := 2 ρ0M CF p
M

−1 ∂ΨM

∂Ce
M

F p
M

−T
, ΞF := 2 ρ0F

1
λp2 CMF

∂ΨF

∂Ce
F

MF (13)

YM := −ρ0M

∂ΨM

∂ZM
, YF := −ρ0F

∂ΨF

∂ZF
(14)

in eq. (10) the dissipation inequality reduces to

D =(Ξ − ΞM −
nF∑

F=1

ΞF ) : L + ΞM : Lp
M + YM ŻM

+
nF∑

F=1

(ΞF : λ̇p MF + YF ŻF ) ≥ 0 .

(15)

Since inequality (15) must hold for arbitrary processes in the material, standard arguments in

rational thermodynamics yield the equations

Ξ = ΞM +
nF∑

F=1

ΞF (16)

DM = ΞM : Lp
M + YM ŻM ≥ 0 (17)

DF = ΞF : λ̇p MF + YF ŻF ≥ 0 . (18)

For the matrix material we assume isotropic behaviour. Therefore eq. (17) may be rewritten

as DM = −τM : 1
2L(be)be + YM ŻM ≥ 0, where be

M is the elastic left Cauchy-Green tensor of
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the matrix and L(be
M ) is the Lie time derivative. This equation is identical to the formulation

in [15].

2.3. Elastic constitutive model

For the matrix material we follow the work of Simo [15] and assume that the elastic strain

energy is a quadratic function of the logarithmic elastic principal stretches. The Youngs

modulus and the Poisson ratio are denoted by EM and νM , respectively.

To introduce the elastic constitutive model for the fibre, eq. (13) is rewritten as SF =

CΞF = (2ρ0F

1
λp2

∂ΨF

∂Ce
F

: MF ) MF . With the definition

σF := EF
1
2
ln[tr(Ce

F )]

= EF
1
2
(ln[tr(MF CMF )] − 2ln[λp]) ,

(19)

where EF denotes the Youngs modulus of a fibre, the 2nd-Piola-Kirchhoff stress tensor reads

SF = σF MF . (20)

2.4. Plastic constitutive model

The plastic constitutive model is determined by the yield condition, which defines the elastic

domain. For the matrix material we consider an isotropic yield criteria of the von Mises type

fM :=

√
3
2

τ d
M : τ d

M − (YM 0 − YM ) ≤ 0

YM := −hM ZM − (YM∞ − YM 0)(1 − exp[−ηM YM ]) .

(21)

Here τ d
M means the deviatoric part of the Kirchhoff stress of the matrix and hM , ηM , YM∞,

YM 0 are plastic parameters. The evolution equations of the plastic variables are

Ċ
p

M = 2 γ̂ Cp(F−1 ∂fM

∂τM
F )

ŻM = γ̂
∂fM

∂YM
.

(22)
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where γ̂ denotes the Lagrangian multiplier. For further details see [15], [18]. For the fibre we

introduce the yield criterion

fF :=
√

tr(MF ΞF MF )2 − (YF 0 − YF ) ≤ 0

YF := −hF ZF − (YF ∞ − YF 0)(1 − exp[−ηF YF ]) ,

(23)

with the plastic parameters hF , ηF , YF ∞, YF 0. The principle of the maximum plastic

dissipation along with the fulfillment of the yield condition results in the optimization problem

−DF (ΞF , YF ) + γ̂ fF (ΞF , YF ) ≤ 0 . (24)

A partial derivation to the unknown variables ΞF , YF yields the evolution equations

λ̇pMF = γ̂
∂fF

∂ΞF

ŻF = γ̂
∂fF

∂YF
,

(25)

along with the loading and unloading conditions fF ≤ 0, γ̂ ≥ 0 and γ̂fF = 0. Taking into

account
√

tr(MF ΞF MF )2 =
√

σ2
F tr(CMF ) one obtains the evolution equations as

λ̇pMF = γ̂ sign(σF )MF

ŻF = γ̂ .

(26)

3. IMPLICIT INTEGRATION ALGORITHM

For the isotropic matrix material we apply an implicit exponential integration algorithm

to integrate the plastic strains (22), see Simo [15]. The plastic parameter is defined by

γ = (tn+1−tn)γ̂, where [tn+1, tn] is a typical time step. An implicit integration of the evolution
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equations of the fibre (26) yields

λp
n+1 = λp

n + γ sign(σF )

ZF n+1 = ZF n + γ .

(27)

The unknown plastic parameter is iteratively determined by fulfillment of the yield condition

(23) using a Newton iteration scheme fk+1
F n+1 = fk

F n+1 +
∂fk

F n+1
∂γ ∆γ = 0, where k denotes the

iteration step. With

∂fF n+1

∂γ
=

∂fF n+1

∂σF n+1

∂σF n+1

∂λp
n+1

∂λp
n+1

∂γ
+

∂fF n+1

∂YF n+1

∂YF n+1

∂ZF n+1

∂ZF n+1

∂γ

= − tr(Cn+1MF )
EF

λp
n+1

− (hF + (YF ∞ − YF 0) ηF exp[−ηF ZF n+1])

(28)

the incremental update of γk+1 = γk + ∆γ is given as

∆γ = −
√

(σk
n+1)2 tr(Ck

n+1MF ) − (YF 0 − YF
k
n+1)

tr(Ck
n+1MF ) EF

λpk
n+1

+ (hF + (YF ∞ − YF 0) ηF exp[−ηF ZF
k
n+1])

. (29)

3.1. Algorithmic consistent tangent modulus

The algorithmic consistent tangent tensor is defined by

Cn+1 := 2
dSn+1

dCn+1
. (30)

Considering the additive split of the stresses in eq. (16) one obtains

Cn+1 = 2
dSM n+1

dCn+1
+

nF∑
F=1

2
dSF n+1

dCn+1

= CM n+1 +
nF∑

F=1

CF n+1 .

(31)

The tangent of the isotropic matrix material is derived in [15]. For each fibre we take into

account eq. (20) in which the structural tensor MF is constant. The stress σF n+1 is a function

of the right Cauchy-Green tensor Cn+1 and the plastic parameter γn+1. The fulfillment of

fF n+1(σF n+1, YF n+1) = 0 implies that γ is a function of C. Thus the derivation
dσF n+1

dCn+1
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reads

dσF n+1

dCn+1
=

∂σF n+1

∂Cn+1
+

∂σF n+1

∂λp
n+1

∂λp
n+1

∂γn+1

∂γn+1

∂Cn+1
. (32)

Here the unknown
∂γn+1

∂Cn+1
may be derived by the use of the implicit derivation of

fF n+1(Cn+1, γn+1(Cn+1) ) = 0, which is

∂fF n+1

∂Cn+1
+

∂fF n+1

∂σF n+1

(
∂σF n+1

∂Cn+1
+

∂σF n+1

∂λp
n+1

∂λp
n+1

∂γn+1

∂γn+1

∂Cn+1
)

+
∂fF n+1

∂YF n+1

∂YF n+1

∂ZF n+1

∂ZF n+1

∂γn+1

∂γn+1

∂Cn+1
= 0 .

(33)

With

∂fF n+1

∂Cn+1
=

√
(σF n+1)2 MF ,

∂fF n+1

∂σF n+1

= sign(σF n+1) tr(CF n+1MF ) (34)

∂σF n+1

∂λp
n+1

= −EF /λp
n+1 ,

∂λp
n+1

∂γn+1
= sign(σF n+1) (35)

∂fF n+1

∂YF n+1

= 1 ,
∂ZF n+1

∂γn+1
= 1 (36)

it follows

∂γn+1

∂Cn+1
=

1
2

sign(σF n+1)
(2σF n+1 + EF )

tr(CF n+1MF )EF /λp
n+1 − yF

′
n+1

MF , (37)

where yF
′
n+1 is defined as

yF
′
n+1 :=

∂YF n+1

∂ZF n+1

= −(hF + (YF ∞ − YF 0) ηF exp[−ηF ZF n+1]) . (38)

Inserting the latter equation and
∂σF n+1

∂Cn+1
= EF /tr(CF n+1MF ) in (32), the tangent modulus

appears in the form

CF n+1 = (
EF

tr(CF n+1MF )
− EF (EF + 2σF n+1)

tr(CF n+1MF )EF − yF
′
n+1 λp

n+1

)MF ⊗ MF . (39)
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4. NUMERICAL EXAMPLES

Some numerical examples demonstrate the main characteristics of the proposed model.

Therefore the constitutive model is implemented into a 3D hexahedral element.

In the first example an element formulation is used, which is numerically integrated with one

integration point and stabilized with the method proposed by Reese et al. [19]. For all other

examples an element formulation suggested in [18] is considered. The following examples are

calculated with an extended version of the program FEAP [20] and illustrate the anisotropic

effects, which occur during large elastic-plastic deformations.

4.1. Necking of a specimen

In the first example the influence of the fibre direction θ on the overall behaviour of the

structure is discussed. Therefore a necking problem of a specimen with a plane strain condition

is investigated. The specimen, the geometrical data and the boundary conditions are shown

in Figure 1. The nodal displacement u along the loaded edge is linked, a free contraction of

the strip is allowed. The specimen is modelled with 60× 20 elements in plane and one element

through the thickness t = 0.1. The material data are summarized in Table I. Only one fibre is

considered in this example.

6.413

12.826 0.982

26.6667

F, u6.413

26.6667

6.413

6.413

�

Figure 1. Geometry and boundary conditions of the specimen
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With a displacement driven computation the specimen is stretched up to 22.5% in

longitudinal direction. The deformed configurations with a plot of the equivalent plastic strains

of the fibre and the matrix are shown in Figures 2, 3 for different fibre directions θ.

Table I. Material data for the matrix and the fibre

matrix EM = 206.9, νM = 0.29,

YM 0 = 0.450, YM∞ = 0.715, hM = 0.12924, ηM = 16.930

fibre EF = 206.9,

YF 0 = 4.50, YF ∞ = 3.15, hF = 0.12924, ηF = 16.930

During the deformation the right edge of the specimen is moving upwards or downwards

depending on the fibre direction. Furthermore Figures 2, 3 show, that the appearance of necking

in the middle of the specimen is strongly influenced by the fibre direction.

Figure 2. Equivalent plastic strains of the fibre
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Figure 3. Equivalent plastic strains of the matrix

4.2. Circular blank

The next example, which was introduced in [8], demonstrates the difference between an

elastoplastic fibre and an elastoplastic matrix.

A circular blank with a concentric circular hole is deep-drawn into a cup, see Figure 4. To

simulate the drawing process without contact elements, the inner circular boundary is pulled

uniformly inwards in a radial direction up to a maximum displacement of 120, while the outer

edge is free. A plane strain condition is considered for the calculation. The circular blank is

modelled with 10 × 40 elements in plane and one element through the thickness.

For the material behaviour it is distinguished between an elastic matrix with an elastic-

plastic fibre material and an elastic-plastic matrix with an elastic fibre material. The yield

stress either for the fibre or for the matrix is given by 0.45. No hardening is assumed for the

plastic behaviour. The Youngs-moduli of the fibre and the matrix are identical. Two fibres

with the fibre directions of Θ = ±450 degree are assumed.

In Figure 5 the deformed configurations with the equivalent plastic strains of the fibres are
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ri

ra

x

y

wr , F

vF
�

geometry: ri = 200

ra = 400

t = 10

matrix: EM = 206.9

νM = 0.29

YM 0 = 0.450

fibre: EF = EM

YF 0 = 0.450

Figure 4. Geometry of the circular blank and its material data

depicted, the matrix material is assumed to be elastic. Whereas in Figure 6 the deformed

configurations with the equivalent plastic strains of the matrix are shown and the fibre is

assumed to be elastic.

wr=40 wr=80 wr=120

Figure 5. Deformed configurations with a plot of the equivalent plastic strains of the fibre
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wr=40 wr=80 wr=120

Figure 6. Deformed configurations with a plot of the equivalent plastic strains of the matrix

The equivalent plastic strains of the fibre occur mainly in the fibre direction under the angle

of Θ = ±450 degree. In opposite to that, the plastic strains of the matrix arise mainly along

the x and y directions. Here, the deformed structure is characterized by the so called ’earing’

which occurs at the free edge. The same characteristic was obtained in [8], [12], where an

anisotropic yield function has been used.

4.3. Punching of a conical shell

The last example demonstrates the strong anisotropic response of a structure due to the

presence of fibres. A conical shell is loaded eccentrically at the upper outer rim and supported

at the lower outer rim. For the geometry data and the material parameters see Figure 7. One

quarter of the shell structure is discretized with 8 × 8 elements and one element through the

thickness.

For the fibre material it is distinguished between a stiff and a soft material set. The fibre

direction is indicated with the arrows shown in Figure 7 and is supposed to be constant for each

quarter of the shell. Only linear hardening is taken into account for the matrix and the fibre

material. The non-linear behaviour is computed using an arclength method with displacement
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p

p

w

pr

R

L

t

fibre:

stiff model soft model

EF = 1241.40 310.35

YF 0 = 2.70 0.450

hF = 0.414 0.414

matrix: EM = 206.9

νM = 0.29

YM 0 = 0.450

hM = 0.4138

geometry: r = 2.70

R = 0.414

L = 1

t = 0.1

Figure 7. The geometry of the conical shell and its material data

control, which leads to the load deflection curve shown in Figure 8.

In the diagram the load p is plotted over the vertical displacement w of the upper rim of the

conical shell for different material sets. The isotropic model consists out of the matrix material

without any fibre and is denoted by the solid line. The fibre-matrix material with the soft

fibres, which is denoted by the line with circles, shows almost the same characteristic through
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 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0  0.5  1  1.5  2  2.5

L
oa

d 
 p

Displacement  w

Isotropic model
Soft model
Stiff model

Figure 8. Load deflection curve of the conical shell

the hole loading process as the isotropic material.

The load is increased until the elastic limit load is reached at w≈ 0.04. Hence a rolling

process starts at the top of the shell until a second stability point at w≈ 0.5 is traced. Here

a global snap through behaviour of the shell is observed. At the local minimum w≈ 1.6 the

stable path is reached and the load is increased until w= 2.1.

The stiff model, displayed by the line with squares, leads to a complete different characteristic

of the load deflection curve. Here the local minimum at w ≈ 0.5 is not reached, which means

that the rolling up and the snap through phenomena arise in one step.

The deformed meshes with a plot of the equivalent plastic strains are shown in Figures 9, 10

at characteristic points for the stiff fibre-matrix model. Here, the first plastic strains emerge

when the elastic limit load is reached. At this point one obtains that the rolling up process

starts form the upper edge. Obviously the deformed structure at w= 0.5 is wavily and the

distributions of the equivalent plastic strains for the fibre as well as for the matrix are not
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rotationally symmetric. At w= 1.21 until w= 1.6 the snap through phenomenon is dominating

the structural behaviour. The equivalent plastic strains attain a maximum at w= 2.1. The

maximum of the equivalent plastic strain of the matrix is 143% and the plastic strain of the

fibres increases to a maximum of 6%. The stiff fibre matrix model shows strong anisotropic

effects through the hole loading process.

w = 0.04 w = 0.5

w = 1.6 w = 2.1

w = 1.21

eq.pl. fibre

0.035

0.030

0.026

0.021

0.016

0.011

0.007

0.002

Figure 9. Deformed configurations with a plot of the equivalent plastic strains of the fibre for the stiff

fibre-matrix material model

w = 0.04 w = 0.5

w = 1.6 w = 2.1

w = 1.21

eq.pl. matrix

1.000

0.871

0.743

0.614

0.486

0.357

0.229

0.100

Figure 10. Deformed configurations with a plot of the equivalent plastic strains of the matrix for the

stiff fibre-matrix material model
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5. CONCLUSION

In this paper a computational framework for the analysis of fibre reinforced materials at finite

elastic-plastic deformations is presented. A constitutive model for anisotropic finite strain

plasticity was introduced. The additive split of the free energy function leads to separated

constitutive equations for the matrix and for the fibres. The material behaviour of the matrix

is assumed to be isotropic. The anisotropic effect is induced by the fibres, which are described

by macroscopic one-dimensional material models. The governing equations were derived with

the principle of maximum dissipation along with the yield condition as a constraint. A set of

numerical examples demonstrated the numerical efficiency of the whole approach.
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