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Abstract A new quadrilateral Reissner–Mindlin plate element with 12 element degrees
of freedom is presented. For linear isotropic elasticity a Hellinger–Reissner functional with
independent displacements, rotations and stress resultants is used. Within the mixed formu-
lation the stress resultants are interpolated using five parameters for the bending moments
and four parameters for the shear forces. The hybrid element stiffness matrix resulting from
the stationary condition can be integrated analytically. This leads to a part obtained by
one point integration and a stabilization matrix. The element possesses a correct rank, does
not show shear locking and is applicable for the evaluation of displacements and stress re-
sultants within the whole range of thin and thick plates. The bending patch test is fulfilled
and the computed numerical examples show that the convergence behaviour is better than
comparable quadrilateral assumed strain elements.

Keywords: Hellinger–Reissner variational principle, quadrilateral element, effective ana-
lytical stiffness integration, one point integration plus stabilization matrix, bending patch
test

1 Introduction

In the past, considerable research efforts have been directed towards the development of
efficient and reliable finite plate elements and numerous publications can be found in the
literature. For an overview on different plate formulations we refer e.g. to the textbook [1].
The so–called DKT and DKQ elements, where the Kirchhoff constraints are only fulfilled
at discrete points, have been successfully applied for thin plates, e.g. [2]. Most of the work
has been focussed on the Reissner–Mindlin model, [3, 4]. This by–passes the difficulties
caused by C1 requirements of the classical Kirchhoff theory [1, 5]. However, the standard
bilinear interpolation for the transverse displacements and rotations leads to severe shear
locking for thin plates. One method to avoid shear locking is the application of reduced
integration or selective reduced integration, see e.g. [6, 7]. This leads to a rank deficiency of
the element stiffness matrix and thus for certain boundary conditions to zero energy modes
for the assembled system. Hence several authors have developed stabilization techniques to
regain the correct rank of the element stiffness matrix, e.g. [8, 9]. These techniques have
been extended and refined for different boundary value problems in [10], where stabilization
matrices on basis of the enhanced strain method have been derived. A further method uses
substitute shear strain fields [11], subsequently extended and reformulated in [12, 13] and
[14, 15, 16]. In [17] the authors propose procedures to impose shear strain fields which
satisfy a priori the conditions of vanishing transverse shear strains for the thin plate limit.
A Taylor series expansion of the stiffness is derived using an assumed strain interpolation
in [18]. The DST and DSQ elements can be seen as further developments of the discrete
Kirchhoff elements, now with incorporation of the transverse shear strains at discrete points,
e.g. [19]. For mixed hybrid models the choice of assumed internal stress fields is particularly
crucial, e.g. [20, 21, 22].

The essential features and novel aspects of the present formulation are as follows:
The element possesses a correct rank with three zero eigenvalues corresponding to the three
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rigid body modes of a plate. It fulfills the bending patch test for constant bending moments
and leads due to the analytical integration of the matrices to a fast stiffness computation.
The paper is organized as follows. The variational formulation for a linear plate accounting
for transverse shear strains is based on a Hellinger-Reissner functional. Hence the finite
element matrices are given. The interpolation functions for the displacements, strains and
stress resultants are specified. Explicit expressions for the element matrices are derived. The
analytical integration leads to the element stiffness matrix which is obtained by one-point
integration plus a stabilization matrix. No parameters have to be adjusted to avoid locking
or to prevent hourglass modes. Several examples demonstrate the efficiency of the developed
finite plate element.

2 Basic Equations

2.1 Variational Formulation

In this section the basic equations of a Reissner–Mindlin plate theory are summarized. We
denote the domain of the plate by Ω, the boundary by Γ and the thickness by h. The plate
is loaded by transverse load p̄ = [p, 0, 0]T in Ω and by boundary loads t̄ = [p̄, m̄x, m̄y]

T

on Γσ. The variational formulation is based on a Hellinger–Reissner functional, where the
displacement field and the stress resultants are independent quantities.

ΠHR(u,σ) =
∫

(Ω)

(εT σ − 1

2
σTC−1σ) dA −

∫
(Ω)

uT p̄ dA −
∫

(Γσ)

uT t̄ ds → stat. (1)

Here, the displacement field is denoted by u = [w, βx, βy]
T , where w is the transverse deflec-

tion, βx and βy the rotations about y and x axes, see Fig. 1. Furthermore, we introduce the
vector of stress resultants σ = [mx,my,mxy, qx, qy]

T with the bending moments mx,my,mxy

and the shear forces qx, qy. The curvatures and the transverse shear strains are organized in
a vector as follows

ε =




κx

κy

2κxy

γx

γy




=




βx,x

βy,y

βx,y +βy,x

βx + w,x

βy + w,y




. (2)

Furthermore, the constitutive matrix for linear isotropic elasticity is introduced as

C =

[
Cb 0
0 Cs

]
with Cb = D




1 ν 0
ν 1 0

0 0
1 − ν

2


 , Cs = κGh

[
1 0
0 1

]
(3)

with the bending rigidity D = Eh3

12 (1−ν2)
, Young´s modulus E, shear modulus G, Poisson´s

ratio ν and shear correction factor κ = 5
6
.

The stationary condition yields

δΠHR(u,σ, δu, δσ) =
∫

(Ω)

[δεT σ + δσT (ε − C−1σ) − δuT p̄] dA −
∫

(Γσ)

δuT t̄ ds = 0 (4)
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with virtual displacements δu = [δw, δβx, δβy]
T and virtual stresses

δσ = [δmx, δmy, δmxy, δqx, δqy]
T .

2.2 Finite Element Equations

For a quadrilateral element we exploit the isoparametric concept with coordinates ξ and
η defined in the unit square {ξ, η} ∈ [−1, 1], see Fig. 1, and interpolate the transverse
displacements and rotations using bilinear functions

w = NTw , βx = NT βx , βy = NT βy . (5)

Here, w, βx, βy denote the nodal displacements and rotations and N the vector of the
bilinear shape functions

N = [N1, N2, N3, N4]
T = a0 + ξ a1 + η a2 + ξη h

a0 =
1

4




1
1
1
1


 a1 =

1

4



−1

1
1

−1


 a2 =

1

4



−1
−1

1
1


 h =

1

4




1
−1

1
−1




.

(6)

For the virtual displacements the same interpolation functions are used.
The fulfillment of the bending patch test is discussed in appendix A, see also Taylor et
al. [23]. There it is shown, that with the transverse shear strains emanating from the
Reissner–Mindlin kinematic the bending patch test can not be fulfilled within the present
mixed formulation. The non constant part of the shear strains according to (2) leads for a
constant stress state to a contribution of the shear energy on the element level.
For this reason we approximate the shear strains with independent interpolation functions
proposed in [14] as follows

h

A

D

C

B

4
3

2

1

w3 �y3

�x3

midsurface (z=0)p
z �

�

z,w
�x

�y

y

x

z

y

my

qy myx

qx
mx

mxy

x

Figure 1: Quadrilateral plate element

[
γx

γy

]
= J−1

[
γξ

γη

]
where

γξ =
1

2
[(1 − η)γB

ξ + (1 + η)γD
ξ ]

γη =
1

2
[(1 − ξ)γA

η + (1 + ξ)γC
η ]

(7)
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with the Jacobian matrix computed with the nodal coordinates x = [x1, x2, x3, x4]
T and

y = [y1, y2, y3, y4]
T

J =


 x,ξ y,ξ

x,η y,η


 =


 xT (a1 + ηh) yT (a1 + ηh)

xT (a2 + ξh) yT (a2 + ξh)




.

(8)

Thus, with eq. (7) the covariant components of the shear strains are transformed to the
cartesian coordinate system. The determinant yields

detJ = j0 + ξ j1 + η j2

j0 = (xTa1)(y
Ta2) − (xTa2)(y

Ta1)

j1 = (xTa1)(y
Th) − (yTa1)(x

Th)

j2 = (yTa2)(x
Th) − (xTa2)(y

Th) .

(9)

The strains at the midside nodes A,B,C,D, see Fig. 1 are specified as follows

γM
ξ = [x,ξ βx + y,ξ βy + w,ξ ]M M = B,D

γL
η = [x,η βx + y,η βy + w,η ]L L = A,C (10)

where the following quantities are given with the bilinear interpolation (5)

βA
α = 1

2
(βα4 + βα1) α = x, y

βB
α = 1

2
(βα1 + βα2)

βC
α = 1

2
(βα2 + βα3)

βD
α = 1

2
(βα3 + βα4)

wA,η = 1
2
(w4 − w1)

wB,ξ = 1
2
(w2 − w1)

wC,η = 1
2
(w3 − w2)

wD,ξ = 1
2
(w3 − w4)

rA,η = 1
2
(r4 − r1) r =

[
x
y

]
rB,ξ = 1

2
(r2 − r1)

rC,η = 1
2
(r3 − r2)

rD,ξ = 1
2
(r3 − r4)

(11)

Remark:
An alternative three field variational formulation based on a Hu–Washizu principle for the
shear part, which would be the appropriate variational formulation for an independent shear
interpolation according to (7), leads to identical finite element matrices due to the fact that
the shear stiffness matrix is diagonal.

Considering (2) and (5) - (11) the approximation of the strains is now obtained by

εh = Bv , B = [B1,B2,B3,B4] , v = [v1,v2,v3,v4]
T , (12)
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where vI = [wI , βxI , βyI ]
T and the submatrices for bending and shear

BI =


 Bb

I

Bs
I


 , Bb

I =




0 NI ,x 0

0 0 NI ,y

0 NI ,y NI ,x


 , Bs

I = J−1


 NI ,ξ b11

I NI ,ξ b12
I NI ,ξ

NI ,η b21
I NI ,η b22

I NI ,η


 (13)

with
b11
I = ξI xM,ξ b12

I = ξI yM,ξ

b21
I = ηI xL,η b22

I = ηI yL,η .
(14)

The coordinates of the unit square are ξI ∈ {−1, 1, 1,−1}, ηI ∈ {−1,−1, 1, 1} and the
allocation of the midside nodes to the corner nodes is given by
(I,M,L) ∈ {(1, B,A); (2, B, C); (3, D,C); (4, D,A)} . The derivatives of the shape function
NI ,x , NI ,y are obtained in a standard way with the derivatives with respect to ξ, η and the
inverse Jacobian matrix.

The stress field σ is interpolated as follows

σh = Sβ S = [1(5×5), S̃] β =
[
β0,β1

]T

S̃ =




J0
11J

0
11(η − η̄) J0

21J
0
21(ξ − ξ̄) 0 0

J0
12J

0
12(η − η̄) J0

22J
0
22(ξ − ξ̄) 0 0

J0
11J

0
12(η − η̄) J0

21J
0
22(ξ − ξ̄) 0 0

0 0 J0
11(η − η̄) J0

21(ξ − ξ̄)
0 0 J0

12(η − η̄) J0
22(ξ − ξ̄)




,

(15)

where the vectors β0 and β1 contain 5 and 4 parameters, respectively. The transformation
coefficients J0

αβ in (15) denote the components of the Jacobian matrix (8) evaluated at the
element center (ξ = 0, η = 0) and transform the contravariant components of the stress
resultant tensors to the cartesian basis system. The coefficients have to be constant in order
to fulfill the patch test, see Appendix A. The constants ξ̄ and η̄ which are introduced to
obtain decoupled matrices denote the coordinates of the center of gravity of the element

ξ̄ =
1

Ae

∫
(Ωe)

ξ dA =
1

3

j1

j0

η̄ =
1

Ae

∫
(Ωe)

η dA =
1

3

j2

j0

. (16)

The element area is given by Ae = 4j0.

Remark:
The interpolation matrix for the stress resultants (15) is different to the procedure in [21],
where 7 and 5 parameters are chosen for the bending and shear part, respectively. Thus a
subsequent reduction of the number of parameters is necessary to obtain a stable element
formulation. The interpolation of the bending moments in (15) corresponds to the approach
of the Pian–Sumihara [24] hybrid quadrilateral with ξ̄ = η̄ = 0, see also the text book
Zienkiewicz and Taylor, part 1, [1]. Finally we mention the paper of Baumann et al. [22],
where the shear approximation is performed in a more complicated way.
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Inserting (12) and (15) and the corresponding equations for the virtual stresses and virtual
strains into the stationary condition (4) yields

δΠh
HR =

numel∑
e=1

[
δβ
δv

]T

e

{[ −H G
GT 0

] [
β
v

]
−

[
0
f

]}
e

= 0 , (17)

where numel denotes the total number of plate elements to discretize the problem and the
virtual element vectors δβ and δv, respectively. The element load vector f = [f1, f2, f3, f4]

T

which follows from the external virtual work is identical with a pure displacement formula-
tion. For a constant load p one obtains fI = [fw

I , 0, 0]T with

fw
I = Ae p (a0I +

1

3

j1

j0

a1I +
1

3

j2

j0

a2I) , (18)

where a0I , a1I , a2I are the components of the vectors defined in (6). The edge load t̄ leads to
corresponding expressions.
Furthermore the matrices H and G are introduced

H :=
∫

(Ωe)

STC−1S dA , G :=
∫

(Ωe)

STB dA . (19)

Since all integrants in (19) involve only polynomials of the coordinates ξ and η the integration
for the element matrices can be carried out analytically. Due to the introduced constants ξ̄
and η̄ one obtains a decoupled matrix H as follows

H =


 Ae C−1 0

0 h


 with h =


 hb 0

0 hs




(4×4)

. (20)

The components of the symmetric matrices hb and hs are given with

hb
11 =

4Aef11

Eh3
(J02

11 + J02
12 )2

hb
22 =

4Aef22

Eh3
(J02

21 + J02
22 )2

hb
12 = hb

21 =
4Aef12

Eh3

[
(J0

11 J0
21 + J0

22J
0
12)

2 − ν (J0
11 J0

22 − J0
12J

0
21)

2
]

hs
11 =

Aef11

3κGh
(J02

11 + J02
12 )

hs
22 =

Aef22

3κGh
(J02

21 + J02
22 )

hs
12 = hs

21 =
Aef12

3κGh
(J0

11 J0
21 + J0

22J
0
12) .

f11 = 1 − 1

3

(
j2

j0

)2

f22 = 1 − 1

3

(
j1

j0

)2

f12 = −1

3

j1

j0

j2

j0

(21)
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Furthermore the matrix G is obtained by analytical integration as follows

G = [G1,G2,G3,G4] GI =


 Ae B0

I

gI


 gI =

1

3
AeγI




0 J0
11 J0

12

0 J0
21 J0

22

1 γ11
I γ12

I

1 γ21
I γ22

I


 (22)

with B0
I = BI(ξ = 0, η = 0) and

γI = hI − j2

j0

a1I − j1

j0

a2I

γ11
I = (b11

I hI − b11
I

j2

j0

a1I − b21
I

j1

j0

a2I)/γI

γ12
I = (b12

I hI − b12
I

j2

j0

a1I − b22
I

j1

j0

a2I)/γI

γ21
I = (b21

I hI − b11
I

j2

j0

a1I − b21
I

j1

j0

a2I)/γI

γ22
I = (b22

I hI − b12
I

j2

j0

a1I − b22
I

j1

j0

a2I)/γI .

(23)

The parameters hI , a1I , a2I are the components of the nodal vectors defined in (6), whereas
the quantities bαβ

I are defined in (14). Since the interpolation of the stress resultants are
discontinuous at the element boundaries, the stress parameters are eliminated on element
level

β = H−1Gv . (24)

Thus considering (20) and (22) one obtains the element stiffness matrix

ke = GTH−1G = k0 + kstab

kIK = GT
I H−1GK = AeB

0T
I CB0

K + gT
I h−1gK .

(25)

Here, k0 denotes the stiffness matrix of a one–point integrated Reissner–Mindlin plate el-
ement with substitute shear strains and kstab the stabilization matrix. An explicit repre-
sentation of k0 is given in appendix B. The matrix h according to (20) consists of two
submatrices of order two and thus can easily be inverted. The element possesses with three
zero eigenvalues the correct rank.

3 Examples

The derived element formulation has been implemented in an extended version of the general
purpose finite element program FEAP, see Zienkiewicz and Taylor [1]. For practical applica-
tions it is more convenient to introduce rotations θx, θy about the corresponding axes. Thus,
the relations θx = −βy and θy = βx have been accounted for when setting up the element
stiffness matrix, see Fig. 1. The other element formulations which have been considered for
comparison have also been implemented in FEAP.
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3.1 Constant bending patch test

First we investigate the element behaviour within a constant bending patch test as is depicted
in Fig. 2. A rectangular plate of length a and width b supported at three corners is loaded
by a concentrated load at the fourth corner and by bending moments at the corners. The
geometrical and material data and the loading parameters are given. The solution of the
problem can be computed analytically. The vertical displacement of node 1 is w1 = 12.48
and the bending moments mx = my = mxy = 1.0 are constant throughout the plate.

y x

1

2

3

4

5

6

7

8

a

b

Node Fz m̄x m̄y

1 -2 20 -10
2 0 20 10
3 0 -20 10
4 0 -20 -10

a = 40
b = 20
h = 0.1
E = 106

ν = 0.3

Figure 2: Rectangular plate, patch of 5 elements

The quadrilateral discrete Kirchhoff element [2] leads to the correct results. The results of
the stabilized Belytschko/Tsay element [8] with parameters rw = 0.1, rβ = 0.05 are presented
in Fig. 3. The present element fulfills the patch test as Fig. 4 shows.

9



6.710E-01 min

6.810E-01

6.910E-01

7.010E-01

7.110E-01

7.210E-01

7.310E-01

7.411E-01

7.511E-01

7.611E-01

7.711E-01

7.811E-01

7.911E-01

8.011E-01

8.112E-01 max

-1.290E+01 min

-1.188E+01

-1.086E+01

-9.844E+00

-8.824E+00

-7.805E+00

-6.786E+00

-5.766E+00

-4.747E+00

-3.727E+00

-2.708E+00

-1.688E+00

-6.689E-01

3.505E-01

1.370E+00 max

Figure 3: Moments mx and displacements w for the Belytschko/Tsay element [8] with rw =
0.1, rβ = 0.05
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1.000E+00 min

1.000E+001.000E+00 max

-1.248E+01 min

-1.153E+01

-1.058E+01

-9.636E+00

-8.688E+00

-7.739E+00

-6.791E+00

-5.843E+00

-4.895E+00

-3.946E+00

-2.998E+00

-2.050E+00

-1.102E+00

-1.533E-01

7.950E-01 max

Figure 4: Moments mx and displacements w for the present element

3.2 Square plate, test of mesh distorsion

3.2.1 Clamped square plate subjected to a concentrated load

a = 100
h = 1
F = 16.3527
E = 10000
ν = 0.3

s

s

F, w

a /2

a
/2

x

y

Figure 5: Distorted meshes for a clamped square plate subjected to a concentrated load

The problem with geometrical and material data is defined in Fig. 5. The mesh consists of
2 × 2 elements over a quarter of the plate, where fourfold symmetry has been used. Here
the influence of element distorsion is tested, where one inner node is moved by 0 < s < 10
in x- and y-direction. An analytical Kirchhoff solution for the center deflection yields w =
0.0056 Fa2/D = 1, see e.g. [5].
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The sensitivity of the different element formulations with respect to the distorsion parameter
s is depicted in Fig. 6. The DKQ–element [2] behaves relatively insensitive with respect
to the mesh distorsion and yields for the present coarse mesh a solution which is too weak.
The results computed with the new element are slightly better than with the Bathe/Dvorkin
element [15]. The clamped plate allows a calculation without stabilization matrix, since the
hourglass modes are suppressed by the boundary conditions. Thus for the present example
the best results are obtained with the one point integrated element U1. However this is not
the case for arbitrary boundary conditions. Results for the Belytschko/Tsay element are
similar to the element U1 in the recommended range 0.02 ≤ rw ≤ 0.05. A contour plot of w
with a distorsion parameter s = 10 is given in Fig. 7.

0,00

0,20

0,40

0,60

0,80

1,00

1,20

0,00 2,00 4,00 6,00 8,00 10,00

distorsion  s

d
is

p
la

ce
m

en
t   

 w

DKQ

Present

U_1

B/D 

Figure 6: Influence of distorsion of FE-mesh on the center deflection of a clamped square
plate subjected to a concentrated load
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Figure 7: Displacements of a clamped square plate subjected to a concentrated load for the
present element and a mesh distorsion s=10
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3.2.2 Simply supported square plate subjected to uniform load

For this example the geometrical and material data have been taken from [21], see Fig. 8.
Considering symmetry a quarter of the plate is discretized using 2 × 2 elements. Again
distorted meshes are considered with a variation of the parameter 0 < s < 1.

a = 10
h = 0.01
q = 10−3

E = 1092000
ν = 0.3

s
a/2

a/2

s w

Figure 8: Distorted meshes for a simply supported square plate subjected to uniform load

Since the plate is rather thin a series solution based on the Kirchhoff theory can be taken for
comparison, see e.g. [5]. The center deflection and the center moment are given as follows

wref = w(
a

2
,
a

2
) =

16 q a4

π6 D

∞∑
m=1

∞∑
n=1

(−1)
m+n

2
−1

mn (m2 + n2)2

mref = mx(
a

2
,
a

2
) =

16 q a2

π4

∞∑
m=1

∞∑
n=1

(−1)
m+n

2
−1

mn (m2 + n2)2
(m2 + νn2) .

(26)

Hence, evaluation of 15 series terms yields wref = 0.40623 and mref = 0.004787. These
values are used to normalize the computed finite element results for distorsion parameters
s = 0 and s = 1 in Table 1. The first row is taken from Table II of Ref. [21]. The
results of the stabilized element [8] depend slightly on the choice of rβ for the stabilization
of the rotations. Again, the present element shows a good behaviour among the considered
four–node elements.

Element w/wref (s=0) m/mref (s=0) w/wref (s=1) m/mref (s=1)
HMPL5 [21] - - 1.030 0.940
B/D [15] 0.977 0.851 0.951 1.047
B/T [8] (0.0,0.02) 1.105 0.944 1.284 1.129
DKQ [2] 0.996 0.828 1.023 0.970
Present element 0.989 0.965 0.956 1.011

Table 1: Center deflection and moment
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3.3 Square plate subjected to uniform load, test of convergence
behaviour

This example is used to test the convergence behaviour of the presented element. A square
plate subjected to uniform load and Navier boundary conditions is considered, see Fig. 9.
Only one quarter of the plate is discretized due to fourfold symmetry.

a = 10
h = 0.1
q = 1
E = 1092000
ν = 0.3

y

a

a

x

q

Figure 9: Square plate subjected to uniform load

The series solution of the Kirchhoff theory exploiting 15 series terms in eq. (26) yields
w(a/2, a/2) = 0.40623,mx(a/2, a/2) = 4.787. The finite element solutions also converge
against the Kirchhoff solution since the shear deformations are suppressed with a large shear
correction factor κ. The results for different mesh densities are presented in Table 2 in
comparison to the discrete Kirchhoff element DKQ and the Bathe/Dvorkin element [15]. As
can be seen the present element shows a superior convergence behaviour for the bending
moment.

w(a/2, a/2) 1 × 1 2 × 2 4 × 4 8 × 8 16 × 16 32 × 32
DKQ 0.37903 0.40458 0.40600 0.40619 0.40622 0.40623
B/D (κ = 1000) 0.31888 0.39690 0.40414 0.40572 0.40611 0.40621
Present (κ = 1000) 0.33918 0.40177 0.40530 0.40601 0.40619 0.40623
analytical 0.40623

mx(a/2, a/2) 1 × 1 2 × 2 4 × 4 8 × 8 16 × 16 32 × 32
DKQ 2.628 4.294 4.667 4.758 4.781 4.787
B/D (κ = 1000) 2.211 4.307 4.672 4.759 4.781 4.787
Present (κ = 1000) 2.998 4.619 4.751 4.779 4.786 4.787
analytical 4.787

Table 2: Convergence behaviour for center deflection and center moment mx

3.4 Corner supported square plate

3.4.1 Load case 1: uniform load

A corner supported plate with edge length 2a subjected to uniform load is discussed. Con-
sidering symmetry the mesh consists of 8 × 8 elements for a quarter of the plate, see Fig.
10. The geometrical and material data are also given. An approximate ansatz according to
[25] reads

w(x, y) = c1 + c2x
2 + c3y

2 + c4x
4 + c5x

2y2 + c6y
4 , (27)
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where the origin of the co-ordinate system lies in the center of the plate. The boundary
condition of vanishing bending moments at the edges can only be fulfilled in an integral
sense. The other boundary conditions and the partial differential equation can be fulfilled
exactly. The constants are determined and thus for y = 0 the approximate Kirchhoff solution
reads

w(x, y = 0) =
qa4

2Eh3
[11 − 6ν − ν2 + (−5 + 4ν + ν2)(

x

a
)2 + (1 +

ν

2
− ν2

2
)(

x

a
)4] . (28)

a = 12
h = 0.375
q = 0.03125
E = 430000
ν = 0.38
ρ = 0.001

a a

y x

Figure 10: Corner supported plate

The deflections w(x, y = 0) obtained with different elements are plotted in Fig. 11. The
Belytschko/Tsay element [8] leads to hourglass modes for parameters rw < 0.02, optimal
results for 0.02 ≤ rw ≤ 0.05 and locking for rw > 0.05, see also [8] and Fig. 11. The
parameter rβ = 0.02 has been chosen constant in all cases.
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Figure 11: Deflection w(x, y = 0) for the corner supported plate, comparison of different
elements
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The deformed mesh amplified by a factor 10 using the Belytschko/Tsay element with rw =
0.001 and rβ = 0.02 is presented in Fig. 12. As can be seen for these parameters the
hourglass modes can not be suppressed completely. Fig. 13 shows the amplified deformed
mesh free of hourglassing and the associated contour plot using the present element.

Figure 12: Deformed mesh for the corner supported plate, using the Belytschko/Tsay element
with rw = 0.001, rβ = 0.02

Figure 13: Deformed mesh for the corner supported plate, using the present element

For a convergence study of the center displacement the shear correction factor is again in-
creased for the present element and the Bathe/Dvorkin element to approximate the Kirchhoff
solution. The results according to Table 3 show nearly the same convergence behaviour for
all three compared elements against the same value, which differs from the approximate
analytical solution.

3.4.2 Load case 2: frequency analysis

Here the element behaviour is tested with a frequency analysis of the corner supported plate.
Two mesh densities (6 × 6 and 96 × 96) are chosen for a quarter of the plate considering
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8×8 16×16 24×24 48×48 96×96 192×192

DKQ 0.11914 0.11960 0.11969 0.11974 0.11975 0.11976
B/D (κ = 1000) 0.11856 0.11946 0.11963 0.11973 0.11975 0.11976
Present (κ = 1000) 0.11862 0.11947 0.11963 0.11973 0.11975 0.11976
analytical (approx.) 0.12253

Table 3: Corner supported plate, convergence study

symmetry. Thus, only symmetric modes can be obtained. Within the eigenvalue analysis a
consistent mass matrix has been used. The normalized frequencies ω̄ = ω (2a)2 (D/ρh)−1/2

are summarized for the different models in Table 4. The results of the fine mesh can be
considered to be converged. An approximate analytical solution according to [26] is available.
Solutions with the Belytschko/Tsay element show that a stabilization is necessary and that
the results depend on the choice of the parameters rw and rβ, see [8].

6 × 6 mesh 96 × 96 mesh
Element ω̄1 ω̄2 ω̄3 ω̄1 ω̄2 ω̄3

B/T [8](0.03, 0.001) 7.054 18.789 43.279 7.028 18.647 43.124
B/D [15] 7.135 18.795 44.010 7.021 18.647 43.021
Present 7.131 18.794 43.961 7.021 18.647 43.020

DKQ [2] 7.117 18.750 43.998 7.073 18.656 43.538
Present(κ = 1000) 7.144 18.800 44.105 7.073 18.656 43.537

analytical (approx.) [26] 7.120 19.600 44.400

Table 4: lowest frequencies for the corner supported square plate

From the results obtained with the fine mesh it can be seen that all Mindlin–type elements
converge against the same solution. To compare with the Kirchhoff solution a further com-
putation with κ = 1000 is performed. Finally the associated eigenvectors are depicted in
Fig. 14

Figure 14: First three eigenvectors for the corner supported square plate

3.5 Clamped circular thick plate subjected to a concentrated load

As last example a thick clamped circular plate with Radius R subjected to a concentrated
load F is considered, see also [8]. The problem with geometrical and material data is defined
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in Fig. 15. The mesh consists of 3 blocks of 4× 4 elements for a quarter of the plate, where
fourfold symmetry has been used. The analytical solution considering shear deformations
yields, see [3],[7]

w(r) =
FR2

16πD
[(1 − r2

R2
) +

2r2

R2
ln

r

R
− 8D

κGhR2
ln

r

R
] . (29)

The last term describes the influence of the shear deformations and leads to unbounded
displacements w at the center of the plate. The other terms are bounded and correspond to
the Kirchhoff solution.

R = 5
h = 2
F = 1
E = 1000
ν = 0

Figure 15: Clamped thick circular plate subjected to concentrated load

Results using different elements and an analytical solution (for r/R ≥ 0.002) are plotted
in Fig. 16. The deflections obtained with the DKQ element [2] are close to the Kirchhoff
solution. Solutions calculated with the Belytschko/Tsay element [8] lead to a dependency
on the parameters rw = rβ. A standard Reissner–Mindlin element with full integration
(SRI 2/2) tends for the present thick plate not to shear locking. The present element, the
Belytschko/Tsay element (with rw = 0.1), the Bathe/Dvorkin element and the SRI-element
(2/2) lead to results which practically coincide with the analytical solution.

4 Conclusions

The formulation of a quadrilateral plate element with three displacement degrees of freedom
(transverse displacement, two rotations) at each node has been presented. The element
possesses a correct rank, does not show shear locking and is applicable for the evaluation
of displacements and stress resultants within the whole range of thin and thick plates. No
parameters have to be adjusted to avoid shear locking or to prevent zero energy modes. The
investigations showed that the constant bending patch test is fulfilled. The computed results
obtained for simply supported, clamped and corner supported plates with different load cases
are very satisfactory. This holds for the calculated displacements and stress resultants and
for the frequency analysis of plates. The convergence behaviour for the displacements and
stresses is slightly better than comparable quadrilateral assumed strain elements. However
the essential advantage is the fast stiffness computation due to the analytically derived
stiffness.
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Figure 16: Displacements w(r) for a clamped thick circular plate subjected to a concentrated
load

A Appendix, The bending patch test

For an arbitrary patch of elements and linear elasticity the constant stress state is considered

σh = Sβ = β0 + S̃β1 = constant . (30)

Thus, the parameter vector β1 which refers to the non–constant part of the element stresses
must vanish, β1 = 0. Next, eq. (24) is rewritten as

[
β0

β1

]
=




1

Ae

C 0

0 h−1







∫
(Ωe)

B dAv

∫
(Ωe)

S̃TB dA v




.

(31)

We proceed with the second equation in (31) and obtain

β1 = h−1
∫

(Ωe)

S̃TB dAv = 0 (32)

Since h−1 is a positive definite matrix with linear independent shape functions for the stresses,
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eq. (32) leads with εh = Bv = constant to

∫
(Ωe)

S̃T dA = 0 , (33)

which is only fulfilled with constant coefficients J0
αβ in (15).

The finite element approximation of the strains (2) reads with (5)

εh = Bv , B = [B1,B2,B3,B4] ,

BI =


 Bb

I

Bs
I


 , Bb

I =




0 NI ,x 0

0 0 NI ,y

0 NI ,y NI ,x


 , Bs

I =


 NI ,x NI 0

NI ,y 0 NI


 .

(34)

Thus, considering arbitrary shaped elements with

∫
(Ωe)

NI ,x dA = Ae NI ,x (ξ = 0, η = 0)∫
(Ωe)

NI ,y dA = Ae NI ,y (ξ = 0, η = 0)∫
(Ωe)

NI dA �= Ae NI(ξ = 0, η = 0)

(35)

the following result holds for an arbitrary patch only with modified shear strains according
to (13), but not with (34) ∫

(Ωe)

B dA = AeB
0 . (36)

Thus, the constant stress state follows from (31)1 considering (36)

β0 = CB0 v . (37)
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B Appendix, Explicit representation of the one-point

integrated stiffness matrix

The explicit representation of k0
IK = AeB

0T
I CB0

K reads

k0
IK =

1

Ae




Cs
11 ξIξK

+ Cs
12 ξIηK

+ Cs
12 ηIξK

+ Cs
22 ηIηK

Cs
11b

11
K ξIξK

+ Cs
12b

21
K ξIηK

+ Cs
12b

11
K ηIξK

+ Cs
22b

21
K ηIηK

Cs
11b

12
K ξIξK

+ Cs
12b

22
K ξIηK

+ Cs
12b

12
K ηIξK

+ Cs
22b

22
K ηIηK

Cs
11b

11
I ξIξK

+ Cs
12b

11
I ξIηK

+ Cs
12b

21
I ηIξK

+ Cs
22b

21
I ηIηK

(Cs
11b

11
I b11

K + Cb11
22 ) ξIξK

+ (Cs
12b

11
I b21

K + Cb12
22 ) ξIηK

+ (Cs
12b

21
I b11

K + Cb12
22 ) ηIξK

+ (Cs
22b

21
I b21

K + Cb22
22 ) ηIηK

(Cs
11b

11
I b12

K + Cb11
23 ) ξIξK

+ (Cs
12b

11
I b22

K + Cb12
23 ) ξIηK

+ (Cs
12b

21
I b12

K + Cb21
23 ) ηIξK

+ (Cs
22b

21
I b22

K + Cb22
23 ) ηIηK

Cs
11b

12
I ξIξK

+ Cs
12b

12
I ξIηK

+ Cs
12b

22
I ηIξK

+ Cs
22b

22
I ηIηK

(Cs
11b

12
I b11

K + Cb11
32 ) ξIξK

+ (Cs
12b

12
I b21

K + Cb12
32 ) ξIηK

+ (Cs
12b

22
I b11

K + Cb21
32 ) ηIξK

+ (Cs
22b

22
I b21

K + Cb22
32 ) ηIηK

(Cs
11b

12
I b12

K + Cb11
33 ) ξIξK

+ (Cs
12b

12
I b22

K + Cb12
33 ) ξIηK

+ (Cs
12b

22
I b12

K + Cb12
33 ) ηIξK

+ (Cs
22b

22
I b22

K + Cb22
33 ) ηIηK




(38)
with

Cb11
22 = D (J02

22 + 1−ν
2

J02
21 )

Cb12
22 = −D (J0

22J
0
12 + 1−ν

2
J0

21J
0
11)

Cb22
22 = D (J02

12 + 1−ν
2

J02
11 )

Cb11
33 = D (J02

21 + 1−ν
2

J02
22 )

Cb12
33 = −D (J0

21J
0
11 + 1−ν

2
J0

22J
0
12)

Cb22
33 = D (J02

11 + 1−ν
2

J02
12 )

Cb11
23 = Cb11

32 = −D (1+ν
2

J0
21J

0
22)

Cb12
23 = Cb21

32 = D (νJ0
22J

0
11 + 1−ν

2
J0

21J
0
12)

Cb21
23 = Cb12

32 = D (νJ0
12J

0
21 + 1−ν

2
J0

11J
0
22)

Cb22
23 = Cb22

32 = −D (1+ν
2

J0
11J

0
12)

Cs
11 = κGh (J02

22 + J02
21 )

Cs
22 = κGh (J02

11 + J02
12 )

Cs
12 = −κGh (J0

11J
0
21 + J0

22J
0
12)

(39)
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