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Abstract

The paper is concerned with a geometrically non-linear solid shell finite element
formulation, which is based on the Hu-Washizu variational principle. For the ap-
proximation of the independent displacement, stress and strain fields, the strain field
is additively decomposed into two parts. Due to the fact that one part of the strain
field is interpolated in the same manner as proposed by the enhanced assumed strain
(EAS) method, it is denoted as EAS field. The other strain field is approximated
with the same interpolation functions as the stress field. In contrast to the EAS
concept the approximation spaces of the stresses and the enhanced assumed strains
are not orthogonal. Consequently the stress field is not eliminated from the finite
element equations. For the displacements tri-linear shape functions are considered.
Shear locking and curvature thickness locking are treated using assumed natural
strain interpolations. A static condensation leads to a simple low order hexahedral
solid shell element. Numerical tests show that the present model is very robust and
allows larger load steps than an EAS solid shell element.

Key words: solid shell element, mixed finite element formulation, geometrically
non-linear, finite strains
PACS:

1 Introduction

In engineering design shell structures are found in a wide range of applications,
e.g. in civil engineering for bridges and roofs, in the automobile industry to
model the body of cars and for smart materials and structures to analyze for
example layered piezoelectric devices. Often a three dimensional material law
is necessary to analyze such structures in detail. In particular in the region of



boundaries and loading points the transverse shear and thickness strains are
not negligible anymore. Furthermore the interlaminar stresses in composites
play an important role for the delamination analysis, see e.g. [37]. It is therefore
worthwhile to develop shell elements using 3D material laws, in which this
paper is a contribution to analyze thin shell structures with a surface oriented
low order hexahedral solid shell element incorporating 3D material models.

In the past several shell elements have been developed, which include 3D
constitutive relations between stresses and strains in the underlying variational
formulation. For this class of shell elements one may distinguish between shell
formulations which model a reference surface of shells, see e.g. [2, 5, 7, 9, 36]
and solid shell formulations which model the top and bottom surface of shells,
see e.g. [10,14,19,23,29,42].

To improve the in-plane bending behavior usually the EAS method is applied
to both types of shell formulations, see e.g. [2,5,9,14,19,42]. The EAS method
was introduced by Simo and Rifai [35] and is based on a three field functional
of the Hu-Washizu type. In [35] it is assumed that the stress and the enhanced
assumed strain interpolations are orthogonal, which results in an elimination
of the stress field from the finite element equations.

Stress approximations which are not eliminated on element level are used in
hybrid stress element formulations. These mixed finite element formulations
are based on the two field Hellinger-Reissner principle, see e.g. [24,30,38]. In [6]
it is shown that the enhanced assumed strain concept and the hybrid stress
method lead to identical finite elements. Another formulation which considers
a stress field approximation was proposed in [12, 13, 26, 27]. In [12] a brick
element is derived with a mixed enhanced strain method. On the basis of the
Hu-Washizu principle displacements, stresses and strains are approximated on
element level. To improve the performance for nearly incompressible regions an
enhanced strain field is added. In accordance with [35] it is assumed that the
stress and the enhanced assumed strain interpolations are orthogonal, which
results in an elimination of some terms from the finite element equations.
In [26, 27] a modified Hu-Washizu functional is introduced, which includes
assumed strains and stresses and in addition a so called enhanced strain field.
On the basis of this functional plane elasticity problems are analyzed.

In this paper we improve the element behavior by employing the Hu-Washizu
functional, which includes a displacement field an assumed strain field and an
assumed stress field. For approximation purposes the assumed strain field is
additively decomposed into two parts. Due to the fact that one strain field is
approximated in the same manner as the enhanced assumed strain field pro-
posed in [35], we call it enhanced assumed strain field. In contrast to [12,35],
the independent stress and the enhanced assumed strain interpolations are not
assumed to be orthogonal. Thus the independent stress field does not vanish
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from the finite element equations. The independent stress and strain fields are
interpolated with the same functions. This leads to an element formulation
with a superior in-plane bending behavior for linear and non-linear appli-
cations. Here, we present a geometrically non-linear solid shell formulation,
which is based on the Green-Lagrangean strain measure. To improve the non-
linear behavior for thin shells and to obtain good results for distorted meshes
in plate bending problems special assumed natural strain (ANS) interpolations
are employed.

For shell structures with bending dominated loading we are focussing on three
locking effects, transverse shear locking, curvature thickness locking and the
Poisson thickness locking, which are discussed in the literature. The trans-
verse shear locking is treated by applying the ANS interpolations to the
transverse shear strains. Assumed natural strain interpolations were presented
in [8, 11, 17]. The curvature thickness locking occurs in shell formulations in-
corporating a 3D material law due to artificial thickness strains. This effect
was observed by Ramm et al. [28]. The curvature thickness locking is reduced
by an ANS interpolation, which was proposed by Betsch and Stein [3]. To
relieve the Poisson thickness locking a linear distribution of the transversal
thickness strains is mandatory. Parisch [23] approximated the displacements
with a quadratic interpolation through the thickness. Another method was
proposed in [7], where a tri-linear distribution of the thickness strain is sug-
gested by the EAS concept. Vu-Quoc and Tan [42] pointed out that the linear
and the bi-linear terms are sufficient to pass the out-of-plane bending patch
test.

In the present element development we consider also the enhanced assumed
strain field to reduce the Poisson thickness locking. Over all the enhanced
assumed strains are applied to the thickness strains and to the membrane
strains, which leads to seven EAS parameters. The curvature thickness lock-
ing is treated by applying the ANS interpolation [3] to the Green-Lagrange
thickness strain. To relieve the transverse shear locking we follow the approach
of Dvorkin and Bathe [8]. The essential features of the present formulation are
summarized as follows:

i) The variational principle is based on the Hu-Washizu functional. This leads
on element level to the interpolation of the displacement, the assumed stress
and strain fields. Here the strains are additively decomposed into two parts,
where the approximation of these fields belonging to two different function
spaces.

ii) To prevent the Poisson thickness locking three EAS parameters are chosen
to enhance the transverse thickness strain.

iii) The transverse shear and thickness strains of the Green-Lagrange type are
approximated with the ANS interpolations.

iv) The static condensation on element level yields a simple low order hexahe-
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dral solid shell element formulation with eight nodes and three displacement
degrees of freedom per node.

Within this features the most striking characteristics of the present solid shell
element are:

i) A superior in-plane bending behavior within distorted meshes. Some linear
and non-linear numerical examples show that the present element produces
a more accurate displacement response than that of shell elements which
are based on the enhanced assumed strain concept.

ii) The robustness of the formulation with respect to the size of the load step.
Numerical examples demonstrate that even for huge load steps the present
element needs much less equilibrium iterations to obtain convergence than
shell formulations, which employ the standard enhanced assumed strain
concept.

The outline of the paper is as follows: In Section 2 we introduce the geo-
metrically non-linear kinematic assumption in a curvilinear description. The
variational principle is introduced in Section 3. In Section 4 the mixed finite
element approximation is presented. In Section 5 some numerical examples
demonstrate the applicability for geometrically and physically non-linear ex-
amples at finite strains.

2 Kinematics

In this section the kinematics of the shell is briefly discussed using convec-
tive curvilinear co-ordinates. A convective description is necessary due to the
ANS interpolations for the transverse shear and thickness strains. We intro-
duce ξ3 as thickness co-ordinate and ξ1, ξ2 as in-plane co-ordinates of the
considered shell formulation. The position vectors of the reference configura-
tion B0 and the current configuration Bt are denoted by X and x = X + u,
respectively.Here, u denotes the displacement vector of a point in the shell
domain. The covariant tangent vectors are obtained by partial derivatives of
the position vectors with respect to the convective co-ordinates ξi

Gi =
∂X

∂ξi
, gi =

∂x

∂ξi
, i = 1, 2, 3 , (1)

whereas the contravariant basis vectors are defined in a standard manner by
Gi ·Gj = δj

i and gi ·gj = δj
i . The deformation gradient is a map of the tangent

spaces F (X) : TB0 → TBt and is given in convective description as

F =
∂x

∂X
= gi ⊗ Gi , (2)
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where the summation convention on repeated indices is assumed. With the
metric coefficients of the current configuration gij = gi ·gj and of the reference
configuration Gij = Gi · Gj the Green-Lagrangean strain tensor reads

E = Eij Gi ⊗ Gj with Eij =
1

2
(gij − Gij) . (3)

3 Variational formulation

Fundamental for the finite element formulation is the variational functional,
for which stationarity is required. In this section the Hu-Washizu three-field
functional is used. From the first variation of the functional the weak form and
the local Euler-Lagrange partial differential equations are derived. Due to non-
linearity the weak form is solved iteratively. For this purpose the linearization
of the weak form is provided. We start with the introduction of the functional

Π(u, Ŝ, Ē) =
∫
B0

(
W0(Ē) + Ŝ : (E − Ē) − u · b

)
dV −

∫
∂σB0

u · t dA ,

(4)
where the assumed stress Ŝ and the assumed strain Ē are work conjugate
quantities in a material description. The stored energy function W0 is a func-
tion of the assumed strain Ē. The load b is defined in the body B0 and t is
the prescribed traction vector on the boundary ∂σB0 of the reference config-
uration. As usual we assume that ∂B0 = ∂σB0 ∪ ∂uB0, where ∂uB0 denotes
the boundary with prescribed values for u. Let V be the space of admissible
displacement variations defined as V := {δu ∈ [H1(B0)]

3δu|∂uB0 = 0}. Fur-
ther let S and E the spaces of admissible stress and strain variations given
as S = E = [L2(B0)]. The first variation with respect to the independent
variables (u, Ŝ, Ē) ∈ V × S × E reads

δΠ(u, Ŝ, Ē) =
∫
B0

(
δE : Ŝ − δu · b

)
dV −

∫
∂σB0

δu · t dA

+
∫
B0

(
δŜ : (E − Ē)

)
dV

+
∫
B0

(
δĒ : (

∂W0

∂Ē
− Ŝ)

)
dV = 0 .

(5)

The variation of the Green-Lagrange strains is obtained as δE = 1
2
(δgi · gj +

gi · δgj) Gi ⊗ Gj with δgi = ∂δu
∂ξi . Integration by parts and the use of the

divergence theorem in Eq. (5) yields the local Euler-Lagrange equations

÷(F Ŝ) + b = 0 , E − Ē = 0 ,
∂W0

∂Ē
− Ŝ = 0 in B0 (6)

F Ŝ N̄ = t on ∂σB0 . (7)
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Eq. (6)1 represents the equilibrium condition, whereas the second equation is
the geometrical field equation and the third equation describes the constitutive
relation. Equation (7) ensures the boundary condition for a given traction on
∂σB0, where N̄ is the outward normal vector. It is remarked that within Eq. (5)
the Euler-Lagrange equations are fulfilled in a weak sense. The remaining
equation is the geometrical boundary condition u = ū on ∂uB, which is a
constraint.

It is noted that, if the space of the stress and strain fields are L2(B0) no inter-
element continuity has to be enforced when constructing the finite element
approximations.

The weak form is with respect to the Green-Lagrangean strain measure non-
linear in the displacements and for more sophisticated materials the strain
energy function W0 is a non-linear function of the strains. To solve this
equation iteratively within the finite element method the weak form is ex-
panded in a Taylor series, which is truncated after the linear element δΠk+1 =
δΠk + D[δΠk] · (∆u, ∆Ŝ, ∆Ē) ≈ 0. The superscript k denotes the iteration
step. The linearization of the weak form results in

D[δΠ] · (∆u, ∆Ŝ, ∆Ē) =
∫
B0

(
∆δE : Ŝ + δE : ∆Ŝ

)
dV

+
∫
B0

(
δĒ :

∂∂W0

∂Ē∂Ē
: ∆Ē − δĒ : ∆Ŝ

)
dV

+
∫
B0

(
δŜ : ∆E − δŜ : ∆Ē

)
dV .

(8)

The linearized virtual Green-Lagrangean strain tensor reads ∆δE = 1
2
(δgi ·

∆gj + ∆gi · δgj) Gi ⊗ Gj.

4 Mixed finite element approximation

In this section an eight node solid shell element is derived. The finite element
approximation is constructed in the sense that the whole domain is divided
in element domains with B = ∪nelm

e=1 Be, where nelm is the total number of
elements. By means of the isoparametric concept the approximations of the
geometry and the displacements on element level (index e) are given by

Xh
e = N Y e and uh

e = N ve . (9)

The vectors Y ∈ �3×8, v ∈ �3×8 contain the nodal co-ordinates and the nodal
displacements, respectively. The superscript h is the characteristic size of the
finite element discretization and indicates the finite element approximation.
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The shape functions per node I = 1, 2, 3, ..., 8

NI =
1

8
(1 + ξ1

I ξ
1)(1 + ξ2

I ξ
2)(1 + ξ3

I ξ
3) with − 1 ≤ ξi ≤ +1 (10)

are arranged in the matrix N = [N 1, N 2, N 3, N 4, N 5, N 6, N 7, N 8] with
N I = diag[NI , NI , NI ]. The virtual displacement vector δu is interpolated in
the same manner as the displacement vector

δuh
e = N δve , (11)

where δve is the virtual nodal displacement vector. Following common usage
in the finite element literature we order the cartesian coefficients of E in a
vector E = [E11, E22, E33, 2E12, 2E13, 2E23]

T . For the approximation of the
Green-Lagrangean strain components on element level some assumed natural
strain (ANS) interpolations are employed. This is necessary to reduce trans-
verse shear locking and to circumvent curvature thickness locking. The ANS
interpolations require a convective description. The approximation of the co-
variant basis vectors are given as

Gh
i = N , i Y e , gh

i = N , i (Y e + ve) , (12)

where N is differentiated with respect to ξi. Accordingly the metric coefficients
read

Gh
ij = Gh

i · Gh
j , gh

ij = gh
i · gh

j . (13)

The transformation of the Green-Lagrangean strain components (3) to carte-
sian co-ordinates is obtained by the matrix T−T

S . To define T S we introduce

T =

(J11)2 (J12)2 (J13)2 aJ11J12 aJ11J13 aJ12J13

(J21)2 (J22)2 (J23)2 aJ21J22 aJ21J23 aJ22J23

(J31)2 (J32)2 (J33)2 aJ31J32 aJ31J33 aJ32J33

bJ11J21 bJ12J22 bJ13J23 J11J22 + J12J21 J11J23 + J13J21 J12J23 + J13J22

bJ11J31 bJ12J32 bJ13J33 J11J32 + J12J31 J11J33 + J13J31 J12J33 + J13J32

bJ21J31 bJ22J32 bJ23J33 J21J32 + J22J31 J21J33 + J23J31 J22J33 + J23J32


,

(14)
where

T S = T with a = 2 and b = 1 . (15)

The quantities Jik are defined as Jik = ei ·Gk where ei describe the orthonor-
mal basis vectors in cartesian co-ordinate space.

In accordance with [3] an ANS interpolation for the convective thickness strain
is applied to overcome curvature thickness locking. The ANS interpolation con-
siders four collocation points, which are defined in convective co-ordinates ξi
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as i = (−1,−1, 0), ii = (1,−1, 0), iii = (1, 1, 0) and iv = (−1, 1, 0). Consid-
ering Eqs. (12), (13) the thickness strain is evaluated at these points and is
interpolated bi-linear through the element. Values evaluated at the collocation
points are denoted with superscript L = i, ii, iii, iv.

To reduce the transverse shear locking in the case of distorted element geome-
tries the ANS interpolations proposed in [8] are applied. Therefore the four col-
location points A = (−1, 0, 0), B = (0,−1, 0), C = (1, 0, 0), and D = (0, 1, 0)
are defined in convective co-ordinates ξi. Employing Eqs. (12), (13) the shear
strains are evaluated at these points and denoted with the superscripts A, B,
C and D, respectively.

Due to the ANS interpolations the brick element is not isotropic anymore.
In particular, ξ1, ξ2 are now the in-plane co-ordinates and ξ3 is the thick-
ness co-ordinate of the present solid shell element. With respect to the ANS
interpolations the approximation of the cartesian strain components read

Eh
e = T−T

S



1
2
(gh

11 − Gh
11)

1
2
(gh

22 − Gh
22)∑iv

L=i
1
4
(1 + ξ1

Lξ1)(1 + ξ2
Lξ2) 1

2
(gL

33 − GL
33)

(gh
12 − Gh

12)

(1 − ξ2)(gB
13 − GB

13) + (1 + ξ2)(gD
13 − GD

13)

(1 − ξ1)(gA
23 − GA

23) + (1 + ξ1)(gC
23 − GC

23)



. (16)

The approximation of the virtual Green-Lagrangean strains on element level
is given by

δEh
e = B δv with B = [B1, B2, B3, B4, B5, B6, B7, B8] . (17)
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The matrix BI at the node I is also specified by the ANS interpolations as

BI = T−T
S

NI,1 gh
1

T

NI,2 gh
2

T

∑iv
L=i

1
4
(1 + ξ1

Lξ1)(1 + ξ2
Lξ2) NI,3 (gL

3 )T

NI,1 gh
2

T
+ NI,2 gh

1
T

(1 − ξ2)(NB
I,1 (gB

3 )T + NB
I,3 (gB

1 )T ) + (1 + ξ2)(ND
I,1 (gD

3 )T + ND
I,3 (gD

1 )T )

(1 − ξ1)(NA
I,2 (gA

3 )T + NA
I,3 (gA

2 )T ) + (1 + ξ1)(NC
I,2 (gC

3 )T + NC
I,3 (gC

2 )T )



.

(18)
For the incremental Green-Lagrangean strains the same interpolation as in
(17) is applied, thus ∆Eh

e = B ∆v. In the linearized weak form (8) the quan-
tity ∆δE : Ŝ appears, which is approximated as

(∆δE : Ŝ)h = δvT
e G ∆ve with G =



G11 G12 · · · G18

G21 G22 · · · G28

...
...

. . .
...

G81 G82 · · · G88


, (19)

where GIJ is defined for a node combination I and J as GIJ = diag[GIJ , GIJ ,
GIJ ]. Considering the ANS interpolations of [8] and [3] and the transforma-
tion (15) the scalar GIJ is obtained as

GIJ = (Ŝ
h

e )
T T−T

S

NI,1NJ,1

NI,2NJ,2∑iv
L=i

1
4
(1 + ξ1

Lξ1)(1 + ξ2
Lξ2) NI,3NJ,3

NI,1NJ,2 + NI,2NJ,1

1
2
[(1 − ξ2) (NB

I,1N
B
J,3 + NB

I,3N
B
J,1) + (1 + ξ2) (ND

I,1N
D
J,3 + ND

I,3N
D
J,1)]

1
2
[(1 − ξ1) (NB

I,2N
A
J,3 + NB

I,3N
A
J,2) + (1 + ξ1) (NC

I,2N
C
J,3 + NC

I,3N
C
J,2)]



,

(20)

where Ŝ
h

e is the approximation of the stress field Ŝ, which is organized in
vector notation as Ŝ = [Ŝ11, Ŝ22, Ŝ33, Ŝ12, Ŝ13, Ŝ23]

T .
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4.1 Interpolation of the assumed strain field

The strain tensor Ē is additively decomposed in Êij Gi⊗Gj and Ẽij Gi⊗Gj,
which reads

Ē = Ê + Ẽ . (21)

For the approximation of the two fields different function spaces Êh = [L2(B0)]
and Ẽh = [L2(B0)] are considered.

Considering vector notation the contravariant components of the strain field
Ê are interpolated and transformed to cartesian space. Along with the vec-
tor notation the cartesian components are obtained with the transformation
matrix T E. According to Eq. (14) T E is defined as T E = T with a = 1
and b = 2. Due to the fact that no inter-element continuity is required the
approximations of the strain field is defined on element level as

Ê
h

e = N̂E α̂e , α̂e ∈ �18 with N̂E = [T 0
E T 0

EN̂ T E
̂̂
N ] . (22)

The interpolation matrices N̂ and
̂̂
N are given as

N̂ =



ξ3 ξ2ξ3 0 0 0

0 0 ξ3 ξ1ξ3 0

0 0 0 0 0

0 0 0 0 ξ3

0 0 0 0 0

0 0 0 0 0


,

̂̂
N =



ξ2 0 0 0 0 0 0

0 ξ1 0 0 0 0 0

0 0 ξ1 ξ2 ξ1ξ2 0 0

0 0 0 0 0 0 0

0 0 0 0 0 ξ2 0

0 0 0 0 0 0 ξ1


. (23)

It is noted that constant values and values which are interpolated through the
thickness N̂ (ξ1, ξ2, ξ3) are transformed to cartesian space with the constant
transformation matrix T 0

E, whereas values which are interpolated in planê̂
N (ξ1, ξ2) are transformed with T E.

Fore the strain field Ẽ the covariant components are interpolated and trans-
formed to cartesian space in the same manner as proposed by Simo and Ri-
fai [35]. Therefore we refer to Ẽ as enhanced assumed strain field. The dis-
continuous finite element approximation is defined on element level as

Ẽ
h

e = M̃ α̃e , α̃e ∈ �7 with M̃ =
det J0

det J
(T 0

S)−T M . (24)

The Jacobian matrix is given as J = [Gh
1 ,G

h
2 ,G

h
3 ]

T . The superscript 0 indi-
cates that the quantity is evaluated at the center of the element. The interpo-
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lation matrix M reads

M =



ξ1 ξ1ξ2 0 0 0 0 0

0 0 ξ2 ξ1ξ2 0 0 0

0 0 0 0 ξ3 ξ1ξ3 ξ2ξ3

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


. (25)

The interpolation of the total strain is summarized as

Ē
h
e = NE αe with NE =

[
N̂E M̃

]
, αe =

 α̂e

α̃e

 , αe ∈ �25 .

(26)

The interpolation (26) is also applied for the virtual strains δĒ
h
e = NE δαe

and the incremental strains ∆Ē
h
e = NE ∆αe.

4.2 Interpolation of the assumed stress field

Let Sh be the approximation of the stress space S. Along with the vector
notation the discontinuous approximation of the stress field reads

Ŝ
h

e = NS βe , βe ∈ �18 with NS = [T 0
S T 0

SN̂ T S
̂̂
N ] . (27)

The interpolation matrices N̂ and
̂̂
N are given with Eq. (23). For the approx-

imation of the virtual stress δŜ
h

e and the incremental stress ∆Ŝ
h

e the same
interpolation (27) is applied.

Remark 1: The interpolation of the independent stress field is similar to
the interpolation which is used for hybrid stress brick elements based on the
Hellinger-Reissner principle, see [16,25,30]. These works differ in the transfor-
mation strategy of the 18 interpolation functions. However, here the constant
stresses and the stresses which are interpolated in ξ3 are transformed with
the constant transformation matrix T 0

S, whereas the stresses which are inter-
polated in ξ1 and ξ2 are transformed with T S. This is necessary to pass the
relevant patch tests, see also section 5.1.
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Remark 2: The finite element approximations of the stress space Sh and the
enhanced assumed strain space Êh are not supposed to be orthogonal. With
Eqs. (24) and (27) one obtains on element level∫

Be

Ŝ
h

e · Ẽ
h

e dVe = βT
e

∫
Be

N̂
T

S M̃ dVe α̃e

= βT
e

∫
Be

(
M + (N̂ )T M̃ + (

̂̂
N )T (T S)T (T 0

S)−T M
)

det J0

det J
dVe α̃e

= βT
e

∫
Be

(
(
̂̂
N )T (T S)T (T 0

S)−T M
)

dξ1dξ2dξ3 α̃e det J0 .

(28)

The integral only vanishes if T S and T 0
S are identical, which is the case if the

element geometry has the shape of a parallelepiped.

4.3 Approximation of the weak form and its linearization

Considering the above introduced interpolations in Eqs. (5) and (8) the ele-
ment matrices

Ke =
∫
Be

G dVe Le =
∫
Be

NT
SB dVe

Ae =
∫
Be

NT
E

∂∂W0

∂Ē
h
e∂Ē

h
e

NE dVe Qe =
∫
Be

NT
S NE dVe

(29)

and the element vectors

f int
e =

∫
Be

BT Ŝ
h

e dVe f ext
e =

∫
Be

NT b dVe +
∫

∂Be

NTt dAe

ae =
∫
Be

NT
E(

∂W0

∂Ē
h
e

− Ŝ
h

e ) dVe be =
∫
Be

NT
S (Eh

e − Ē
h
e ) dVe

(30)
are defined. Here the integrals are calculated by employing an Gauß integration
scheme with 2 × 2 × 2 integration points. With respect that Eq. (5) is solved
iteratively with Newton’s method the following approximation on element level
is obtained[

δΠ + D[δΠ] · (∆u, ∆Ŝ, ∆Ē)
]h

e
⇒

δve

δαe

δβe


T 


f int

e − f ext
e

ae

be

 +


Ke 0 LT

e

0 Ae −QT
e

Le −Qe 0




∆ve

∆αe

∆βe



 .
(31)

Taking into account that the finite element interpolations for the strain field
Ē and the stress field Ŝ are discontinuous across the element boundaries a
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static condensation on element level yields the element stiffness matrix and
the right hand side as

KTe = Ke + LT
e (Qe A−1

e QT
e )−1 Le (32)

f e = f ext
e − f int

e − LT
e (Qe A−1

e QT
e )−1(Qe A−1

e ae + be) . (33)

After assembly over all elements KT = Anelm
e=1 KTe, ∆V = Anelm

e=1 ∆ve and
P = Anelm

e=1 f e one obtains a pure displacement problem

KT ∆V = P (34)

with the unknown incremental nodal displacements. The stresses and strains
are updated with the increments

∆βe = (Qe A−1
e QT

e )−1(Le∆ve + Qe A−1
e ae + be) (35)

∆αe = A−1
e (QT

e ∆βe − ae) . (36)

5 Numerical Examples

In this section we discuss the behavior of the present solid shell element formu-
lation, which we call HSEE solid shell. The present formulations are compared
with shell elements and with solid shell elements incorporating 3D material
laws. Most of the formulations are based on the enhanced assumed strain
concept to improve the membrane strains and the thickness strain. The shear
locking and the curvature thickness locking are treated by ANS interpolations.
A solid shell element which belongs to this class of formulations was proposed
in [14,44]. Instead of the originally introduced five EAS parameters it is used in
this paper with two additional parameters associated with the bilinear terms
ξ1ξ3 and ξ2ξ3 for the thickness strains. In [42] it is shown that the element in
this version is able to pass the out-of-plane bending patch test. Here we will
refer to this element as Q1A3E7.

The following examples are calculated with an extended version of the program
FEAP [39] and illustrate the superior behavior of the presented solid shell
element.

5.1 Patch tests

The following numerical tests confirm that the presented element formulation
is able to reproduce constant stress states for disturbed element geometries.
Here we distinguish between the membrane patch test and the out of plane
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bending patch test. In both tests we consider the element mesh illustrated in
Fig. 1, which was introduced in [18]. Here E, ν, t are the Young’s modulus,
Poisson’s ratio and the thickness of the plate.

x

yz

1

2

3

4

a
b

Geometry data: Material data:

a = 0.24 E = 106

b = 0.12 ν = 0.25

t = 0.001

Nodal co-ordinates: (x,y,z)

1 : (0.04, 0.02, 0.0005)

2 : (0.18, 0.03, 0.0005)

3 : (0.16, 0.08, 0.0005)

4 : (0.08, 0.08, 0.0005)

Fig. 1. Element mesh for the patch tests; 1, 2, 3, 4 are the numbers of the interior
nodes on the top of the surface

5.1.1 Membrane patch tests

Following Vu-Quoc and Tan [42] the displacements

u1 = (x + y/2) · 10−3 , u2 = (y + x/2) · 10−3 , u3 = 0.0 (37)

are applied to the exterior nodes of the shell to obtain constant normal stress
in x and y direction along with a constant shear stress in plane. A numerical
solution of the problem with the present element formulation leads to constant
values for the independent stress field

Ŝ11 = 1333 , Ŝ22 = 1333 , Ŝ12 = 400 . (38)

All other stress components are equal to zero. The results are in accordance
with the analytical solution, which confirms that the membrane patch test is
passed.
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5.1.2 Out-of-plane bending patch test

The purpose of this test is to receive constant bending stresses. According
to [42] the displacements

u1 = ∓h

2
(x + y/2) · 10−3

u2 = ∓h

2
(y + x/2) · 10−3

u3 = 10−3 · (x2 + xy + y2)/2

(39)

at the top and bottom surface of the solid shell formulation have to be applied
to the exterior nodes. The theoretical solution of the stresses at the top and
bottom surface of the plate

Ŝ11 = ∓0.6667 , Ŝ22 = ∓0.6667 , Ŝ12 = ∓0.200 (40)

agrees exactly with the numerical solution obtained by the presented element
formulation. For the HSEE solid shell element an evaluation of stresses at
arbitrary points is possible due to the independent stress interpolations. This
allows the calculation of stresses at e.g. the nodes of an element, whereas in
standard displacement element formulations accurate values for the stresses
are obtained only at the superconvergent points.

Node number u1 u2 u3

1 −2.50 · 10−8 −2.00 · 10−8 1.400 · 10−6

2 −9.75 · 10−8 −6.00 · 10−8 1.935 · 10−5

3 −1.00 · 10−7 −8.00 · 10−8 2.240 · 10−5

4 −6.00 · 10−8 −6.00 · 10−8 9.600 · 10−6

Table 1
Displacements at internal nodes, analytical solution

The displacements of the interior nodes are given by equation (39) and are
summarized in Tab. 1. The values agree exactly with the displacements cal-
culated with the presented HSEE solid shell element.

5.2 Bending tests

5.2.1 In-plane bending tests

This example is also a geometrical linear example in which in-plane shear
locking with respect to mesh distortion is investigated. A cantilever beam is
modelled with two finite elements and is subjected to a couple force F at its
free end, see Fig. 2. Here the boundary conditions at the clamped end are
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indicated with lines. The St.-Venant material is described with the Young’s
modulus E and the Poisson’s ratio ν. The analytical solution yields a tip
deflection of v = 1.

v
F

F

F

F

s

s

10

2

2

Loading:

F = 10

Material data:

E = 1.5 · 103

ν = 0
Fig. 2. Clamped beam loaded with a couple

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5

D
is

pl
ac

em
en

t v

Distortion s

HSEE solid shell
Pian, Sumihara, [24]

Q1E30, [15]
Q1A3E7

Fig. 3. Deflection v at the tip of the cantilever versus mesh distortion s

In Fig. 3 the displacement response v for different mesh distortion parameters
s is shown. The solution of Pian and Sumihara [24] is often used as a reference
with respect to sensitivity for in-plane mesh distortion, see e.g. [35]. The plane
stress element in [24] is based on the Hellinger-Reissner variational principle.
The response of the Q1A3E7 element with 7 EAS parameters leads to slightly
smaller deflections than obtained with [24]. One obtains similar results as [24],
if more EAS parameters are used. This is the case with the brick element
Q1E30, which utilize 30 EAS parameters, see [15]. The results calculated with
the HSEE solid shell element are the best among the considered elements.
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5.2.2 Plate bending test

An often used linear example to investigate the mesh sensitivity in plate bend-
ing problems is the clamped square plate subjected to a single load, see Fig. 4.
The St.-Venant Kirchhoff material is defined by material parameters E and ν
and the thickness of the plate is t = 1. Considering symmetry only a quarter
of the system is discretized with one layer of 2 × 2 elements. An analytical
solution based on the Kirchhoff theory is provided in [40] as

w = 0.00560FL2 12(1 − ν2)

Eh3
= 1 . (41)

s

s

F, w

L/2

L
/2

Geometry:

L = 100

Loading:

F = 16.3527

Material data:

E = 1 · 104

ν = 0.3
Fig. 4. Clamped plate with single load and finite element model
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Fig. 5. Deflection w at the middle of the plate versus mesh distortion s

In Fig. 5 the center deflection for different distortion parameters is depicted.
It is noted that both solid shell elements HSEE and Q1A3E7 show a simi-
lar distortion sensitivity. These elements are much more robust against mesh
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distortion than the EAS brick element Q1E30. The reason for the good be-
havior of the solid shell elements is the ANS interpolation for the transverse
shear strains, which reduces the transverse shear locking effect even for highly
distorted meshes.

In this example it is necessary to treat another locking effect, the Poisson
thickness locking, with at least linear distribution of the thickness strains. Both
solid shell elements use an enhanced assumed strain distribution in thickness
direction to relieve this looking effect. However, the diagram Fig. 5 shows that
the present solid shell leads to slightly larger deflections than the Q1A3E7
element.

5.3 Cook’s membrane problem

This geometrically and physically non–linear example was proposed in [33]. A
trapezoidal membrane is clamped on one side while the other side is loaded,
see Fig. 6. The Neo–Hookean material model, see Appendix A.1, is applied
for the constitutive law; the shear modulus µ and the Lamé constant Λ are
given in Fig. 6. For a large value of Λ the Lamé constant can be interpreted
as a penalty factor and the incompressibility is approximately fulfilled.

x
y

v

4
4

1
6

48

F Material data:

Λ = 40.0889 · 104

µ = 80.1938

Thickness:

t = 1

Fig. 6. Cook’s membrane: geometrical and material properties

The computation is performed using load control with load steps of ∆F = 1.0
from F = 0 up to F = 100. Fig. 7 shows the vertical displacement of the
top edge node plotted versus the number of elements per side of the different
meshes. For the presented HSEE solid shell element only one element through
the thickness is considered, which holds also for the Q1A3E7 element. The de-
flections are compared to those of the enhanced four node plane strain element
Q1E4 proposed in [33]. All three formulations converge to the same result. The
present formulation exhibits much better accuracy for coarse meshes, whereas
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load increment iteration Simo, Armero [33] HSEE solid shell

∆F = 1 1 3.5078038 · 10−1 1.7399264 · 10−1

F = 0 → F = 1 2 9.8340487 · 10+1 2.3341304 · 10+1

3 2.9872313 · 10−3 6.7990261 · 10−5

4 7.3419459 · 10−5 4.0356002 · 10−8

5 2.5837469 · 10−9

load increment iteration Q1A3E7 HSEE solid shell

∆F = 10 1 1.7399264 · 10+0 1.7399264 · 10+0

F = 90 → F = 100 2 2.0283293 · 10+3 1.6486545 · 10+3

3 1.8706805 · 10+1 4.1416162 · 10−1

4 1.8146389 · 10+1 4.9356821 · 10−3

5 5.2998562 · 10−2 4.0496369 · 10−8

6 1.7113390 · 10−4

7 3.9370601 · 10−8

∆F = 100 1 no convergence 1.7399264 · 10+1

F = 0 → F = 100 2 2.4535562 · 10+5

3 5.6068275 · 10+3

4 2.0163798 · 10+3

5 1.8824028 · 10+1

6 1.4375709 · 10+0

7 1.5296451 · 10−3

8 5.9077728 · 10−8

Table 2
Convergence of the Euclidian norm of the residual vector during equilibrium itera-
tion

the results of the Q1A3E7 and the Q1E4 are nearly identical. The deformed
configuration consisting of 32 × 32 × 1 elements is shown in Fig. 7.

In Tab. 2 the norm of the residual vector for different load increments is
summarized. It demonstrates the superior convergence behavior of the present
formulation especially for large load increments in comparison to the Q1A3E7
element.
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Fig. 7. Cook’s membrane: convergence of the finite element solutions with compar-
ison of different element formulations

5.4 Hemisphere with 18o hole

This geometrically non-linear example is often cited as a benchmark for shell
elements, see e.g. [36], and is a test for the ability to model rigid body modes
and inextensible bending. The shell is subjected to four single loads, see Fig. 8.
Here R is the radius of the shell middle surface and t denotes the thickness.
The St.-Venant-Kirchhoff material is characterized by Young’s modulus E and
Poisson’s ratio ν. With respect to symmetry only a quarter of the system is
modelled with 16 × 16 finite elements in plane and with one element through
the thickness.

The pinching forces are increased up to a load F = 2.5 in 20 equal-sized load
increments. In Fig. 9 the inward and outward displacements at the points
A and B are plotted versus the pinching load F . The solid shell element
provides no node in the middle surface of the shell, therefore the associated
displacements are calculated by averaging the displacements of the inner and
outer surface, see the detail in Fig. 8.

To assess the convergence behavior the results are compared to shell elements
proposed in [3, 14, 23, 43]. In [3, 43] the quarter of the system is modelled by
16 × 16 four node shell elements. Parisch [23] introduced 8 × 8 shell elements
with quadratic shape functions. For the solid shell element Q1A3E5 proposed
in [14] the same finite element discretization is employed as for the present
one. Our solution agrees very well with the one in [43], which is based on a zero
normal stress condition and therefore is free of curvature thickness locking and
Poisson locking effects.
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free

Detail

Geometry data:

R = 10 t = 0.01

Material data:

E = 6.825 · 107 ν = 0.3

Fig. 8. Finite element model of the hemisphere with hole; loading points at the
quarter of the system

To investigate the differences in the load deflection curves depicted in Fig. 9 a
convergence study has been accomplished. The present element as well as the
elements from [14,43] lead to the same results for a 64× 64× 1 finite element
mesh. A further mesh refinement does not change the displacement response
significantly. Furthermore, the load deflection diagram in Fig. 9 shows that
the present element converges faster against the correct solution than the
elements [3, 14,23].

} }B A

0

0.5

1

1.5
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2.5

0 1 2 3 4 5 6 7 8

L
o
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F

Displacements uA uB

Betsch et al. [3]
Parisch [23]

Wagner, Gruttmann [43]
Q1A3E5 [14]

64 × 64 × 1 Q1A3E5 [14]
HSEE solid shell

Fig. 9. Load deflection diagram for the displacements uA and uB

To demonstrate another advantage of the present formulation the convergence
rate of the equilibrium iteration is examined. In Tab. 3 the equilibrium iter-
ations for different load steps are listed. If a load F = 0.125 is applied to
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load increment iteration Q1A3E5 HSEE solid shell

∆F = 0.125 1 1.2500000 · 10−1 1.2500000 · 10−1

F = 0 → F = 0.125 2 6.9991349 · 10+6 7.0184158 · 10+6

3 8.0648375 · 10+4 9.1423844 · 10+4

4 1.9094676 · 10+4 1.8102654 · 10+1

5 1.0493687 · 10+3 5.6128239 · 10−5

6 7.4607803 · 10+2

7 4.7130570 · 10+2

8 3.6091711 · 10+2

9 2.2958236 · 10+2

10 2.1759446 · 10+2

11 9.2434598 · 10+1

12 1.0077155 · 10+2

13 1.8389587 · 10+1

14 1.1024285 · 10+1

15 2.4866909 · 10−1

16 2.4364768 · 10−3

17 5.1168022 · 10−5

∆F = 2.5 1 no convergence 2.5000000 · 10+0

F = 0 → F = 2.5 2 6.6981264 · 10+9

3 9.6238530 · 10+8

4 1.8512449 · 10+8

5 2.4455530 · 10+7

6 1.4298378 · 10+6

7 1.3248578 · 10+5

8 1.3781622 · 10+2

9 4.1150342 · 10−4

10 3.8434455 · 10−5

Table 3
Convergence of the residuum during equilibrium iteration

the initial system, the solid shell element Q1A3E5 needs 17 iterations to ob-
tain equilibrium, whereas the present HSEE solid shell element converges in
5 steps. If the total load F = 2.5 is applied in one single step, the HSEE solid
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Fig. 10. Deformed structure at λ = 1

shell formulation needs 10 iterations to find equilibrium and the Q1A3E5 does
not converge. The deformed finite element mesh using the present element for-
mulation is shown in Fig. 10.

5.5 Full hemispherical shell

The structure examined here is shown in Fig. 11 and was introduced in [34].
The elastic–plastic material behavior is modelled by a finite strain elastic-
plastic material description, which is summarized in Appendix A.2. The ex-
ample illustrates the excellent convergence behavior of the presented element
formulation in a geometrical and physical non-linear range for large load steps.
Furthermore it shows the good agreement of the displacement response with
other shell elements.

F w, A F w, B

sy
m sym

free edge

A B

Geometry:

R = 10

t = 0.5

Material:

E = 10

ν = 0.2

y0 = 0.2

h = 9

Fig. 11. The cantilever rod with boundary conditions and material properties

The elastic and plastic material parameters and the geometrical data are listed
in Fig. 11. Here, E, ν, y0, h are Young’s modulus, Poisson’s ratio, initial yield
stress and linear hardening parameter. The radius R is defined with respect to
the middle surface of the shell and the thickness is denoted by t. Considering
symmetry only a quarter of the system is modelled with 24 elements per side
in the shell plane and one element through the thickness. The structure is
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loaded at the points A and B with an inward and outward concentrated load
F . The load is applied according to the detail in Fig. 8.

The computed load deflection diagram for the displacements wA and wB is
depicted in Fig. 12. For the points A and B it is distinguished between the
displacements at the inner node and at the outer node. The diagram demon-
strates a good agreement of the presented element formulation HSEE solid
shell with the Q1A3E7 element and the shell element introduced in [4].
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outer node Q1A3E7

inner node HSEE solid shell
outer node HSEE solid shell

Fig. 12. Load deflection diagram for inward and outward displacements

The robustness of the proposed element formulation is examined applying
different load increments ∆F to the initial system. The norm of the residual
vector within the equilibrium iteration is shown in Tab. 4. For a large load step
∆F = 4.5 ·10−3 the proposed element formulation needs only 6 iteration steps
to obtain equilibrium. In contrast to that the enhanced assumed strain formu-
lation Q1A3E7 needs 13 iteration steps. It is noted that for a very large load
increment ∆F = 40 ·10−3 the presented element formulation converges within
9 steps, whereas no equilibrium state is found with the Q1A3E7 formulation.

eq. pl. strains
0.0535
0.0435
0.0335
0.0236
0.0136
0.0036

Fig. 13. Deformed structure at F = 40 ·10−3 with a plot of equivalent plastic strains

For the total load F = 40 · 10−3 the deformed structure with a plot of the
equivalent strains is depicted in Fig. 13, where the load is increased by a load
step ∆F = 1 · 10−3. It is found that the maximum of the equivalent plastic
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load increment iteration Q1A3E7 HSEE solid shell

∆F = 1 · 10−3 1 1.0000000 · 10−03 1.0000000 · 10−03

F = 0 → F = 1 · 10−3 2 1.0255057 · 10−01 1.0304972 · 10−01

3 1.4620802 · 10−04 1.6758631 · 10−04

4 1.6814215 · 10−06 3.1458114 · 10−10

5 1.1589160 · 10−12 1.2193957 · 10−13

∆F = 4.5 · 10−3 1 4.5000000 · 10−03 4.5000000 · 10−03

F = 0 → F = 4.5 · 10−3 2 1.9717494 · 10+00 2.1299179 · 10+00

3 2.6660921 · 10−01 6.1554178 · 10−02

4 5.8287892 · 10−01 5.2909746 · 10−05

5 1.1760770 · 10−01 3.5602566 · 10−11

6 3.0378222 · 10−01 1.1944998 · 10−13

7 8.9652086 · 10−02

8 7.1431481 · 10−02

9 5.1928597 · 10−02

10 7.1564570 · 10−03

11 1.7397217 · 10−05

12 2.8206958 · 10−10

13 1.2215279 · 10−13

∆F = 40 · 10−3 1 no convergence 4.0000000 · 10−02

F = 0 → F = 40 · 10−3 2 3.2168768 · 10+02

3 4.7483025 · 10+01

4 1.1718805 · 10+01

5 2.4045442 · 10+00

6 5.4100507 · 10−02

7 4.7898365 · 10−05

8 7.7575103 · 10−11

9 1.0356731 · 10−13

Table 4
Convergence of the norm of the residual vector during an equilibrium iteration

strain ≈ 5.35% appears at point A. The implicit integration algorithm to solve
the set of elastic–plastic material equations is an approximative procedure and
leads for larger load steps in general to a loss of accuracy. In the present case
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if one applies the total load in one step ∆F = 40 · 10−3 however no significant
differences neither in the displacements nor in the equivalent plastic strains
are noted.

5.6 Conical shell

This example is selected to demonstrate the ability of the developed finite
element to deal with strongly non-linear situations. The geometrical data are
taken from Başar and Itskov [1], who investigated this problem using an Og-
den material. Here, elastic–plastic material behavior is assumed. The material
model for finite plastic strains is summarized in Appendix A.2. All necessary
material and geometrical data are depicted in Fig. 14. Regarding to [1] the
problem is slightly modified due to eccentric loading and boundary conditions.

Considering symmetry, only a quarter of the shell is discretized with 16 ×
16×1 elements. Thus only symmetric buckling behavior may occur. The non-
linear behavior is computed using an arclength algorithm with displacement
control. The results are depicted in Fig. 15, where w denotes the vertical
displacement of the upper edge. The load deflection diagram demonstrates
that the displacement response of the present formulation and the enhanced
assumed strain formulation Q1A3E7 agree very well.

p pr

R

L

t

p

Geometry: Material:

r = 1 E = 206.9

R = 2 ν = 0.29

L = 1 σy = 0.45

t = 0.1 σ∞ = 0.715

Load: p h = 0.12924

η = 16.93

Fig. 14. Finite element mesh with geometrical and material data

The load is increased until w = 0.02, where the elastic limit load is reached.
Hence a rolling process starts at the top of the conical shell. A further stability
point is traced at w = 1.08. Here, a global snap through behavior is observed.
A local minimum of the load defection curve is attained at w = 1.67. Then a
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Fig. 15. Load deflection diagram: the load p versus the vertical displacement w of
the upper outer edge
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Fig. 16. Deformed meshes with a plot of the equivalent plastic strains

stable path with increasing loads due to stiffening effects arises. The deformed
meshes at characteristic points are shown in Fig. 16.

A Appendix

In the following we briefly summarize the basic equations of the material
models used in the examples.
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A.1 Hyper-elastic material

Following [22,41] the strain energy function is given by

W0S = [
µ

2
(λ2

1 + λ2
2 + λ2

3 − 3) − µ ln(J)] +
Λ

4
(J2 − 1 − 2 ln(J)) (A.1)

with

J = λ1λ2λ3 . (A.2)

Here λi are the principal stretches of the elastic material, which are evaluated
by solving the eigenvalue problem

(C − λ2
A1)NA = 0 with A = 1, 2, 3 . (A.3)

Furthermore NA denotes the eigenvector and with Eq. (3) the right Cauchy-
Green tensor C is obtained from

C = 2Ē − 1 . (A.4)

The material parameter Λ is a Lamé constant, which may be computed from
the shear modulus µ and the bulk modulus κ as Λ = κ − 2/3µ. For a large
value of Λ the Lamé constant can be interpreted as a penalty factor and the
incompressibility condition is approximately fulfilled, detF = λ1λ2λ3 ≈ 1.

A.2 Finite strain J2-plasticity model

The applied plasticity model for finite strains is restricted to isotropic material
behavior. The numerical realization of the finite strain J2-plasticity model is
proposed in several papers; see e.g. [31], [20] and the references therein. The
finite deformation plasticity model is based on a multiplicative decomposition
of the deformation gradient F = F e F p in an elastic and plastic part. Due to
the Lagrangean formulation of the variational equations the plasticity model
is formulated using the right Cauchy-Green tensor according to Eq. (A.4).
With Cp = F p T F p the eigenvalue problem

(C − λe
A

2Cp) N̂
A

= 0 with N̂
A · Cp N̂

B
= δAB (A.5)

yields the elastic stretches λe
A. The elastic strain energy function is defined as

Wel =
Λ

2
[εe

1 + εe
2 + εe

3]
2 +µ[(εe

1)
2 +(εe

2)
2 +(εe

3)
2] with εA = ln[λe

A] . (A.6)

Here Λ and µ are material parameters. The evolution law of the plastic strains
and the internal variable are derived from the principle of maximum plastic
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dissipation; see [32]. A Lagrangean formulation of the plastic flow rule is given
as

Ċ
p

= 2 λ Cp (F−1 ∂φ

∂τ
F ) , α̇ = λ

∂φ

∂q
(A.7)

where λ denotes the Lagrange multiplier, τ is the Kirchhoff stress and α, q
are conjugate internal hardening variables. The yield criterion φ is of a von
Mises type with exponential isotropic hardening, [21]

φ =

√
3

2
τD · τD − (y0 + h α + (y∞ − y0)(1 − exp[−η α])) . (A.8)

In this equation h, y0, y∞, η are material parameters and τD is the deviatoric
Kirchhoff stress tensor. An implicit exponential integration algorithm of the
evolution equations (A.7) along with the strain energy (A.6), introduced in
[31], leads to an additive model as in the linear theory.
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