
Universität Karlsruhe (TH)

Institut für Baustatik

A constitutive model for

magnetostrictive and piezoelectric materials

K. Linnemann, S. Klinkel, W. Wagner

Mitteilung 2(2008)

BAUSTATIK



Universität Karlsruhe (TH)

Institut für Baustatik

A constitutive model for

magnetostrictive and piezoelectric materials

K. Linnemann, S. Klinkel, W. Wagner

Mitteilung 2(2008)

BAUSTATIK

c©

Prof. Dr.–Ing. W. Wagner Telefon: (0721) 608–2280
Institut für Baustatik Telefax: (0721) 608–6015
Universität Karlsruhe E–mail: bs@.uni-karlsruhe.de
Postfach 6980 Internet: http://www.bs.uni-karlsruhe.de
76128 Karlsruhe



A constitutive model for magnetostrictive and
piezoelectric materials

K. Linnemanna, S. Klinkelb, W. Wagnerb

aFraunhofer Inst. für Kurzzeitdynamik, Ernst-Mach-Instiut,
Eckerstraße 4, 79104 Freiburg

bInstitut für Baustatik, Universität Karlsruhe (TH),
Kaiserstraße 12, 76131 Karlsruhe

Contents

1 Introduction 3

2 Phenomenological behavior 5
2.1 Magnetostrictive materials . . . . . . . . . . . . . . . . . . . . . 6
2.2 Ferroelectric ceramics . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Governing equations 9
3.1 Magnetostriction . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Piezoelectricity . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Thermodynamic framework 12
4.1 Integration algorithm . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Hardening function . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Algorithmic consistent tangent moduli 15

6 Ferrimagnetic hysteresis effects 16

7 Constitutive modelling of ferroelectric ceramics 17

1



8 Variational formulation and finite element approximation 17
8.1 Element formulation . . . . . . . . . . . . . . . . . . . . . . . . 18

9 Numerical simulations 20
9.1 Magnetostrictive hysteresis . . . . . . . . . . . . . . . . . . . . . 20
9.2 Ferroelectric hysteresis . . . . . . . . . . . . . . . . . . . . . . . 22
9.3 Amplified magnetostrictive actuator . . . . . . . . . . . . . . . . 23
9.4 Piezoelectric hollow cylinder . . . . . . . . . . . . . . . . . . . . 27
9.5 Piezoelectric telescope actuator . . . . . . . . . . . . . . . . . . 32

10 Conclusion 33

A Vector notation and linear material constants 35

B Scalar valued conjugated variable to the internal variable 36

C Derivatives for the integration algorithm 36

D Derivatives for the algorithmic consistent tangent moduli 37

Abstract This paper is concerned with a macroscopic nonlinear constitu-
tive law for magnetostrictive alloys and ferroelectric ceramics. It accounts for
the hysteresis effects which occur for the considered class of materials. The
uniaxial model is thermodynamically motivated and based on the definition
of a specific free energy function and a switching criterion. Furthermore, an
additive split of the strains and the magnetic or electric field strength into a
reversible and an irreversible part is suggested. Analog to plasticity, the irre-
versible quantities serve as internal variables. A one-to-one-relation between
the two internal variables provides conservation of volume for the irreversible
strains. The material model is able to approximate the ferromagnetic or ferro-
electric hysteresis curves and the related butterfly hysteresis curves. Further-
more, an extended approach for ferrimagnetic behavior which occurs in mag-
netostrictive materials is presented. A main aspect of the constitutive model
is its numerical treatment. The finite element method is employed to solve the
coupled field problem. Here the usage of the irreversible field strength permits
the application of algorithms of computational inelasticity. The algorithmic
consistent tangent moduli are developed in closed form. Hence, quadratic
convergence in the iterative solution scheme of governing balance equations is
obtained.

Key words Nonlinear constitutive law, magnetostrictive alloys, ferro-
electric ceramics, ferromagnetic hysteresis, smart material, computational
treatment, finite element method
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1 Introduction

Magnetostrictive alloys and ferroelectric ceramics are smart materials. They
have a wide range of application for actuation and sensing, see e. g. Smith
(2005). Magnetostrictive materials show an inherent coupling between mag-
netic field and deformation. This effect bears a resemblance to piezoelectric-
ity which describes a coupling between electric field and deformation. Both
materials show similar nonlinear behavior. The purpose of this paper is the
development of a constitutive model which accounts for the nonlinear behavior
and hysteresis effects of magnetostrictive alloys and ferroelectric ceramics.

Microscopically motivated models approximate the switching processes for
each single crystallite. The process is modeled by an energy criterion. The
macroscopic behavior is obtained by averaging over a large number of union
cells. Microscopically motivated models for ferroelectric ceramics are presented
in e. g. Chen and Lynch (2001), Hwang et al. (1995, 1998) and Huber and Fleck
(2001). Approaches for magnetostrictive materials are often based on the
model of Jiles and Atherton (1986) which was primarily developed for ferro-
magnetic hysteresis without magnetoelastic coupling. The formulation ap-
proximates the bending and movement of the domain walls during the mag-
netization. Extended models for magnetostrictive material are found in e. g.
Sablik and Jiles (1993), Jiles (1995), Calkins et al. (2000), Dapino et al. (2000b),
Dapino et al. (2000a), and Dapino et al. (2002). With the consideration of
switching for each crystallite microscopically motivated models generally lead
to a large number of internal variables which increases the numerical effort.

Macroscopical constitutive models are based on a phenomenological de-
scription of the material behavior. This reduces the amount of internal vari-
ables. A widespread approach is the model of Preisach (1935) which was
originally developed to describe the magnetization of ferromagnetics. The
choice of parameters allows the simulation of a wide range of hysteresis curves.
Formulations for magnetostrictive alloys are proposed in Adly et al. (1991)
and Tan and Baras (2004). Applications of the Preisach model for piezoelec-
tric hysteresis are published in Hwang et al. (1995), Pasco and Berry (2004),
Yu et al. (2002a,b) and Butz et al. (2005, 2008). The Preisach model is purely
phenomenological and not thermodynamically consistent.

Another class of constitutive models are formulated in accordance with
the principles of thermodynamics. The material behavior is determined with
the definition of a specific free energy function. For piezoelectric ceramics
the strains, the polarization, and the temperature often serve as independent
variables. For magnetostrictives the magnetization is used instead of the polar-
ization. Here, a common approach are higher order energy functions, see e. g.
Carman and Mitrovic (1995), Wan et al. (2003), Zheng and Liu (2005), and
Zheng and Sun (2007). Alternatively a definition of the free energy function
in sections is used, see Wan et al. (2003) and Smith et al. (2003). The indepen-
dent variables are splitted in a reversible and an irreversible part for the approx-
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imation of the hysteresis behavior. The irreversible quantities serve as internal
variables and represent the polarization or magnetization state. The develop-
ment of the internal variables is determined with the definition of a switching
criterion. The model of Fang et al. (2004) for magnetostrictive materials is
based on these assumptions. More often, thermodynamically motivated mod-
els are applied for piezoelectric ceramics. The approaches of Kamlah (2001),
Kamlah and Böhle (2001) and Elhadrouz et al. (2005) use multiple switching
criterions to specify begin and end of the irreversible behavior. The multiaxial
models of Landis (2002) and McMeeking and Landis (2002) get along with only
one switching criterion. The domain processes are restricted by a hardening
functions. Schröder and Gross (2004) and Schröder and Romanowski (2005)
present a co-ordinate invariant formulation on this assumption. The models
of McMeeking and Landis (2002), Kamlah (2001), Schröder and Romanowski
(2005) use a one to one relation between irreversible strains and polarization
to ensure that domain switching induces irreversible strains. This assump-
tion is sufficient for electrical loading but prevents the simulation of ferroelas-
tic behavior or mechanical depolarization. The circumvent this disadvantage
Kamlah (2001) decomposes the irreversible strains in a part for ferroelectric
and one for ferroelastic switching processes. A more general approach is pub-
lished in Landis (2002) and Klinkel (2006a,b). Here a coupled switching criteri-
ons and hardening functions are used to control the change of the irreversible
strains. Mehling et al. (2007) introduce an orientation distribution function
as additional internal variable to approximate coupled electromechanical load-
ings.

In the present paper a thermodynamic motivated constitutive model is
developed which accounts for hysteresis effects in ferroelectric ceramics and
magnetostrictive alloys. The uniaxial model is embedded in in a three di-
mensional formulation. This benefits an efficient numerical treatment of the
model but prevents a reorientation of magnetization or polarization during
the simulation. The electric respectively the magnetic field strength is splitted
additively. The irreversible field strength serves with the irreversible strains
as internal variable. The main aspects of the model may by summarized as
follows:

• A thermodynamically consistent constitutive model is presented. The
formulation is based on the definition of a free energy function and a
switching criterion. A polynomial of second order is used as free energy
function. The switching criterion controls domain switching. The center
of the switching surface moves in the sense of kinematic hardening in
plasticity.

• The strains, the magnetic and the electric field strength respectively are
decomposed additively in a reversible and an irreversible part. The split
of the field strength is an alternative approach to the decomposition of
the magnetization or polarization. Its application is motivated by the
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numerical treatment of the constitutive model with the finite element
method. Here the field strength is described with a scalar potential
which serves as nodal degrees of freedom. So no change of variables is
necessary. Furthermore, one may draw on algorithms of computational
inelasticity.

• A one to one relation between the irreversible quantities is utilized to
maintain volume conservation during the irreversible processes. A hard-
ening function restricts the growth of the internal variable near satura-
tion.

• The model is able to reproduce the ferroelectric and butterfly hysteresis
of ferroelectric ceramics. Furthermore, the typical hysteresis of magne-
tostrictive alloys can be simulated. The occurring ferrimagnetic hystere-
sis behavior of these materials is approximated by an expanded approach
which is based on a transformation of the independent variables in a lo-
cal description. Ferroelastic switching and mechanical depolarization are
not considered within this work.

• For the numerical treatment of the problem the finite element method is
employed. The constitutive model is implemented in a hexahedral ele-
ment. Therefore the evolution equation is integrated by an implicit Eu-
ler backward algorithm which leads to a local iteration. The algorithmic
consistent tangent moduli are formulated in closed form. Accordingly,
quadratic convergence in the iterative Newton-Raphson solution scheme
is guaranteed.

The outline of the paper is as follows: Section 2 deals with the phenomeno-
logical behavior of magnetostrictive and piezoelectric materials. In Section 3
the governing equations of the coupled field problems are introduced. The
thermodynamic framework of the constitutive model is presented in Section
4. In Section 5 the algorithmic consistent tangent moduli are developed. An
expanded model for ferrimagnetic behavior is presented in Section 6. Section 7
deals with the modeling of ferroelectric ceramics. In Section 8 the variational
formulation and the finite element approximation are presented. The numeri-
cal examples in Section 9 show the capabilities and main characteristics of the
proposed constitutive model.

2 Phenomenological behavior

This section summarizes the behavior of the considered smart materials. At
first we account for the origin and phenomenology of magnetostriction. For
extended treatises on magnetism of solids, the books of Bozorth (1964) and
Engdahl (2000) are recommended. The second part of the section is concerned
with piezoelectric coupling, in particular with ferroelectric ceramics. It briefly
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deals with the differences to the magnetostrictive model. Piezoelectricity is
well documented in literature, see Jaffe et al. (1971) and Ikeda (1990). A good
survey of the basic phenomenons of ferroelectric ceramics and their nonlinear
effects is given in e.g. Kamlah (2001).

2.1 Magnetostrictive materials

The term magnetostriction is applied for several magneto-elastic coupling phe-
nomena. The most utilized effect is the Joule magnetostriction which denotes
a deformation of a specimen due to an applied magnetic field �H . The recipro-
cal Villari effect is characterized by a change of the magnetization �M induced
by a mechanical deformation. Both phenomena occur in all ferro-, ferri, and
antiferromagnetic materials. The magnetic properties of these materials orig-
inate from magnetic moments �m which results from the spins of electrons in
uncomplete occupied inner orbitals of the atom. Due to spin orbit coupling,
which is a purely quantum mechanical interaction, the magnetic moments are
closely connected with the shape of the electron hull −e. The electrical nega-
tive electron hull effects Coulomb forces to the neighboring atoms in the lattice.
Regarding the complex shape of −e these forces are not isotropic, which is im-
portant for magnetostrictive coupling. This correlation is described by means
of a sample crystallite depicted in Fig. 1. Above the Curie temperature Tc the
magnetic moments are disordered, see Fig. 1a). Cooling the material down
below Tc, the exchange interaction causes a parallel ordering of the atoms in
the lattice, see Fig. 1b). Applying an external magnetic field the magnetic mo-

ments switch in the direction of �H . This process is associated with the rotation
of the electron hulls −e. Along with the rotation of −e the Coulomb forces
between the atoms change and the gaps in the lattice shift. Consequently, a
deformation of the specimen is observed, see Fig. 1c). The magnetostrictive
strains are denoted by λ‖ and λ⊥. The volume conservation of the deformation
involves λ⊥ = −1

2
λ‖. Depending on the electron configuration some materials

show a positive magnetostriction with λ‖ > 0. For materials with negative
magnetostriction it holds λ‖ < 0.

Figure 1: Illustration of the Joule magnetostriction

To illustrate the origin of the Villari Effect a crystallite with positive mag-
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netostriction below Tc is considered, see Fig. 2a). The sample is deformed by
a mechanical stress S parallel to �m. The deformation shifts the inter-atomic
distances in the lattice. This change makes sure that another direction of the
magnetic moments is energetically convenient. So the magnetic moments ro-
tate as depicted in Fig. 2b). Since no direction of the magnetic moments is
specified by S, the orientations of Fig. 2b) and c) have the same probability.
This results generally in a reduction of the magnetization for polycrystalline
materials.

Figure 2: Illustration of the Villari effect

Parallel aligned magnetic moments are energetically not favorable on meso-
scopic scale. Hence, the crystallites are divided in substructures, the so-called
domains. The magnetic moments in each domain are aligned parallel, which is
caused by the exchange interaction. The neighboring domains have an opposite
magnetization direction to minimize the magnetic energy. They are separated
by domain walls. The structure of a polycrystalline material is shown in Fig. 3.

crystallite domain wall

Figure 3: Domain structure of a magnetostrictive alloy

The nonlinear behavior of magnetostrictive materials is strongly connected
with the domain structure. If a magnetic field is applied to a specimen, the
magnetic moments along the domain walls begin to rotate in the direction of
�H . The domain walls begin to move. Due to discontinuities in the lattice
the movements of the domain walls are irreversible processes. Hence, for an
oscillating magnetic field hysteresis curves are observed. In the ferromagnetic
hysteresis curve the magnetic flux density �B is plottet versus the field strength
�H . The curve of Fig. 4a) is exemplary plotted for the X1 direction. The
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ordinate of the so called butterfly hysteresis in Fig. 4b) is the strain component
E11. The domain states are sketched for both figures. The characteristic values
of the curves are the coercive field strength �Hc and the remanent values �Brem

and Erem.

Figure 4: Ferromagnetic and butterfly hysteresis curves in magnetostrictive
materials

Commercial available magnetostrictive alloys like Terfenol-D show a ferri-
magnetic behavior which is affected by mechanical prestress. The ferrimagnetic
lattice consists of two interleaving lattices with contrary magnetization. For an
applied magnetic field �H one of these lattices switches in the direction of �H ,
the other one remains unchanged. In the absence of mechanical loading both
lattices are switching. The specimen behaves like a ferromagnetic material.
For mechanical prestress this switching process is hampered. As a result the
characteristic hysteresis curves are separated in respectively two hysteresis as
shown in Fig. 5.

2.2 Ferroelectric ceramics

The basic attribute of ferroelectric ceramics is the polarization, analog to the
magnetization in ferromagnetics. Below Tc the centers of positive and negative
charges are situated at different locations in the unit cell, which results in a
spontaneous polarization. The direction of the polarization can be changed
by applying an electrical or mechanical loading. Due to the Coulomb forces,
the central metal ion shifts within the unit cell which causes a distortion.
Similar to ferromagnetism the direction of the polarization is aligned parallel
on microscopic level. On the mesoscopic scale a domain structure evolves
to minimize the electrostatic energy. Again, the nonlinear behavior of the
material is affected by switching processes along the domain walls resulting
in wall movements. The observed hysteresis curves are very similar to the
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Figure 5: Ferromagnetic and butterfly hysteresis curves in magnetostrictive
materials

ones of magnetostrictive materials. Additionally, for a mechanical load cycle
a so called ferroelastic hysteresis can be measured which does not occur in
magnetostrictives. Ferroelastic hysteresis effects are not considered in this
paper.

3 Governing equations

In this section the governing equations of magnetostrictive and piezoelectric
materials are described. Again the first part is addicted to magnetostrictives.
The annotations to piezoelectricity are summarized briefly with respect to
differences and similarities to the magnetoelastic coupling.

3.1 Magnetostriction

The balance equations of magnetostrictive coupled problems are the strong
form of equilibrium and the Maxwell equation considering solenoidality of the
magnetic field. The local forms are given as

S ∇ + ρb = 0 (1)

�B · ∇ = 0. (2)

Here, S stands for the stress tensor, ρb for the mechanical body forces and
�B for the magnetic flux density. Thus the influence of ponderomotive forces
is minor, they are neglected in this paper. In consequence the stress tensor is
symmetric. The mechanical and magnetic boundary conditions read

S · n = t on ∂tB0 (3)

�B · n = ςM on ∂ςB0. (4)
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The vector t denotes the prescribed traction on the surface ∂tB0 and the scalar
value ςM the magnetic surface charge on ∂ςB0. ςM is an imaginary quantity,
because of magnetic monopoles do not exist. But its introduction is beneficial
if the magnetic scalar potential is used, see also the examples in section 9. The
vector n gives the outward unit normal on ∂B0. The linear strain tensor E
and the magnetic field strength �H are defined as

E =
1

2
(∇⊗ u + u ⊗∇) (5)

�H = −∇φM , (6)

where u is the displacement vector and φM the magnetic scalar potential. The
scalar potential is used instead of the magnetic vector potential, because only
fields without curl are considered. For the constitutive model the total strains
and the magnetic field strength are decomposed additively as

E = Er + Ei (7)

�H = �Hr + �H i. (8)

The superscript r denotes the reversible part. The irreversible quantities, in-
dexed by i, serve as internal variables and describe the dissipative part. Eq. (7)
is in full accordance with small strain plasticity theory. The additive split of
field strength is a novel aspect of the proposed model. More common is a
decomposition of the magnetization, see Fang et al. (2004), or the split of the
polarization for piezoelectric models, see e. g. McMeeking and Landis (2002),
Kamlah (2001), Schröder and Romanowski (2005). The additiv split of the
magnetic field is an alternative approach to describe the remanent changes of
the magnetization. It is not motivated physically but by the numerical treat-
ment of the constitutive model. The analogy to plasticity permits the usage
of soloing algorithms of computational inelasticity. Furthermore a Legendre
transformation of the constitutive equations is not necessary for the finite ele-
ment formulation. Fig. 6 illustrates �H i in an idealized ferromagnetic hysteresis
curve. For a magnetic field lower �Hc linear behavior is assumed. Accordingly,
‖ �B‖ < �Mc with �Mc = �Hc μ is applied for the magnetic flux density. For field

strengths higher than �Hc irreversible wall movements are presumed which are
associated with a change of the internal variable �H i. For the fully magnetized
material reversible behavior is assumed. The growth of �H i stopped if its norm
is equal to �H i

s. The saturation value �H i
s is estimated from �Brem. Generally the

hysteresis is curved. Here the permeability μ, which is described by the gradi-
ent of the tangent, depends in on the chosen working point. In the following
μ is defined for ‖ �H‖ = 0 and ‖ �B‖ = �Brem. Accordingly �H i

s = �Brem/μ is also
valid for the general case.

Due to conservation of volume, which is claimed for the irreversible strains,
a one-to-one relation is assumed as

Ei =
Es

( �H i
s)

2
�H i · �H i I. (9)
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Figure 6: Idealized ferromagnetic hysteresis

this is similar to ferroelectric models where this ansatz is common, see e.g.
Kamlah (2001), McMeeking and Landis (2002). The one to one relation links
the irreversible strains and field strength. This reduces the amount of internal
variables to the vector �H i. But Eq. (9) is only valid for pure electrical loadings.
Ferroelastic behavior or mechanical depolarization is not approximated with
this approach. The quantity I denotes the projection tensor of rank two given
as

I =
3

2

(
e ⊗ e − 1

3
1

)
with e =

�H i

‖ �H i‖ . (10)

The magnetization arises along a given direction e. The formulation is re-
stricted to an uniaxial constitutive model with this assumption. A reorienta-
tion of the magnetization direction e is not possible yet. But the approach
permits a more efficient computational treatment of the model, see Sec. 5

3.2 Piezoelectricity

The balance equations of the piezoelectric coupled problem are given by Eq. (1)
and the local form of the Gauss’ law

�D · ∇ = 0 (11)

instead of Eq. (2). The vector �D stands for the dielectric displacements.
In case of dielectrics free volume charges are not considered. The boundary
conditions are given in Eq. (3) and supplemented with

�D · n = ςE on ∂ςB0, (12)

where ςE is the electric surface charge. The electric field �E is described via

�E = −∇φE (13)
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with the electric scalar potential φE. Similar to Klinkel (2006a) the total
electric field is additively decomposed as

�E = �Er + �Ei, (14)

where �Ei is the irreversible electric field. It serves as internal variable and
replaces �H i in Eq. (9). Additionally the saturation parameter �Ei

s is applied

instead of �H i
s and �Pc instead of �Mc. The similarities of magnetomechanical and

electromechanical coupling are obvious. Further the formulation is exclusively
formulated for magnetostrictive problems.

4 Thermodynamic framework

The constitutive model is based on a free energy function which serves as
thermodynamic potential

ρψ =
1

2
(E − Ei) : � : (E − Ei) +

�H i · e
�H i

s

(E − Ei) : � · �H

− 1

2
( �H − �H i) · μ ( �H − �H i) + ρψ̄( �H i). (15)

Here, �, �, and μ are elasticity tensor, piezomagnetic coupling tensor and
permeability. In the present work a second order potential is used. Thus
Eq. (15) is quadratic in E und �H . The last term ρψ̄( �H i) represents the

energy stored in the internal variable �H i. With respect to plasticity it is
called hardening function. According to the second law of thermodynamics
and with neglecting thermal effects the Clausium-Duhem inequality reads

D = S : Ė − �B · �̇H − ρψ̇ ≥ 0 (16)

The scalar D names the dissipated energy. Using standard arguments of ra-
tional continuum mechanics, see Coleman and Noll (1963), the stress and the
magnetic flux density can be derived as

S :=
∂ρψ

∂E
= � : (E − Ei) +

�H i · e
�H i

s

� · �H (17)

− �B :=
∂ρψ

∂ �H
=

�H i · e
�H i

s

�
T : (E − Ei) − μ ( �H − �H i). (18)

Applying this definitions and the derivation in time of Eq. (9) the dissipation
reduces to

D = −
(

2
Es

( �H i
s)

2

∂ρψ

∂Ei
: I �H i +

∂ρψ

∂ �H i

)
︸ ︷︷ ︸

Ξ

· �̇H i ≥ 0, (19)

12



in which Ξ is defined as the work conjugated variable to the internal variable
�H i. The partial derivatives are given by

∂ρψ

∂Ei
= S (20)

∂ρψ

∂ �H i
=

1

�H i
s

[
(E − Ei) : � · �H

]
e − μ ( �H − �H i) − ∂ρψ̄

∂ �H i
. (21)

A switching criterion is introduced to signify the begin of irreversible domain
processes

Φ =
Ξ · Ξ

�M2
c

− 1 ≤ 0. (22)

Here the parameter �Mc serves as coercive value. Reversible wall movements in
the domains are assumed for Φ < 0. For irreversible wall movements it holds
Φ = 0. The postulate of maximum dissipation is formulated by a Lagrange
functional with Φ as constraint. It reads

L = −D(Ξ) + λΦ(Ξ), (23)

where λ is the Lagrange multiplier. The solution of Eq. (23) requires

∂L
∂Ξ

= 0 and
∂L
∂λ

= Φ(Ξ) = 0. (24)

The necessary conditions for the existence of a local minimum are given by
the Kuhn-Tucker conditions

λ ≥ 0, Φ ≤ 0, λΦ = 0. (25)

The evolution equation for the internal variable �H i is derived from Eq. (24)1

�̇H i = 2 λ
Ξ

�M2
c

. (26)

It gives the rate of �H i for a given E and �H . Eq.(19) implies that �H i is

parallel to e a scalar valued internal variable α = ( �H i · e)/ �H i
s is introduced.

Furthermore, its work conjugated variable is reduced to the scalar Ξ̄ with
Ξ = Ξ̄ e which is given in Appendix B. The governing equations for the
optimization problem read

α̇ = 2 λ
Ξ̄

�M2
c

(27)

Φ =
Ξ̄2

�M2
c

− 1 = 0. (28)
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4.1 Integration algorithm

The evolution equation (27) is integrated in time. Here the implicit Euler
scheme is used, because it is unconditionally stable. The time t is discretized
in time steps. It is assumed that all values for the time step tn are known. The
internal variable αn+1 at tn+1 = tn+Δt has to be determined for an incremental
ΔE or Δ �H . The discrete form of Eq. (27) in the interval [tn, tn+1] read

αn+1 = αn + 2 γ
Ξ̄n+1

�M2
c

(29)

with γ = λ (tn+1 − tn). For irreversible processes it holds Φn+1 = 0. The
switching criterion depends on the conjugated variable Ξ̄n+1 which is a function
of the unknown αn+1. For the first predictor step a trial value αtrial = αn is
assumed. If the switching criterion is satisfied with the trial value, αtrial is
equal to αn+1. If not, a radial return algorithm with the following residua is
applied

Ra = αn+1 − αn − 2 γ
Ξ̄n+1

�M2
c

= 0

Rb =
Ξ̄2

n+1

�M2
c

− 1 = 0.

(30)

These equations are iteratively solved by a local Newton iteration

∂R
(k)
a

∂αn+1

Δα +
∂R

(k)
a

∂γ
Δγ = −R(k)

a

∂R
(k)
b

∂αn+1

Δα +
∂R

(k)
b

∂γ
Δγ = −R

(k)
b

(31)

with
α

(k+1)
n+1 = α

(k)
n+1 + Δα

γ(k+1) = γ(k) + Δγ.
(32)

The iteration step is denoted by the superscript (k). The partial derivatives
needed in Eq.(31) are given in Appendix C.

4.2 Hardening function

The hardening function ρψ̄ determines the shape of the ferromagnetic and
butterfly hysteresis curves. It is defined as

∂ρψ̄

∂ �H i
:=

[
k �H i

s α + a arctanh
(α

b

)]
e (33)

with the material parameters k, a, and b. The first summand means linear
hardening. The second one restricts the growth of α near saturation.
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5 Algorithmic consistent tangent moduli

The numerical solution of the boundary value problem requires an iterative
method for nonlinear constitutive models. To obtain quadratic convergence the
Newton-Raphson iteration scheme is applied. Here, consistent linearizations
of S and �B are needed for the load step tn+1. It reads

dSn+1 = �̃n+1 : dEn+1 + �̃n+1 · d �Hn+1 (34)

d �Bn+1 = �̃n+1 : dEn+1 + μ̃n+1 d �Hn+1. (35)

The tangent moduli �̃, �̃n+1 and μ̃n+1 can be employed by numerical evalua-
tion. A more efficient formulation is obtained by deriving them in closed form.
The total derivatives of Sn+1 and �Bn+1 are given by

dSn+1 =

∣∣∣∣∣ ∂S

∂E
: dE +

∂S

∂ �H
d �H +

∂S

∂α
dα

∣∣∣∣∣
n+1

(36)

d �Bn+1 =

∣∣∣∣∣∂ �B

∂E
: dE +

∂ �B

∂ �H
d �H +

∂ �B

∂α
dα

∣∣∣∣∣
n+1

. (37)

Terms depending on the internal variable αn+1 have to be eliminated. The
consistency condition Φ̇ λ = 0 implies dΦn+1 = 0 for irreversible processes.
Consequently dΞ̄n+1 = 0 gives an equation for dαn+1. It reads

dαn+1 =

∣∣∣∣∣−
[

∂Ξ̄

∂E
: dE +

∂Ξ̄

∂ �H
· d �H

]
1
∂Ξ̄
∂α

∣∣∣∣∣
n+1

. (38)

With substituting Eq. (38) in Eqs. (36) and (37) one obtains

dSn+1 =

∣∣∣∣∣
[

∂S

∂E
− 1

∂Ξ̄
∂α

∂S

∂α
⊗ ∂Ξ̄

∂E

]
: dE +

[
∂S

∂ �H
− 1

∂Ξ̄
∂α

∂S

∂α
⊗ ∂Ξ̄

∂ �H

]
· d �H

∣∣∣∣∣
n+1

(39)

d �Bn+1 =

∣∣∣∣∣
[

∂ �B

∂E
− 1

∂Ξ̄
∂α

∂ �B

∂α
⊗ ∂Ξ̄

∂E

]
: dE +

[
∂ �B

∂ �H
− 1

∂Ξ̄
∂α

∂ �B

∂α
⊗ ∂̄Ξ

∂ �H

]
d �H

∣∣∣∣∣
n+1

.

(40)

Evaluating the partial derivatives one observes the algorithmic consistent tan-
gent moduli as

�̃n+1 = � − 1
∂Ξ̄
∂α

∂S

∂α
⊗ ∂Ξ̄

∂E
(41)

�̃n+1 = αn+1 �− 1
∂Ξ̄
∂α

∂S

∂α
⊗ ∂Ξ̄

∂ �H
(42)

μ̃n+1 = μ − 1
∂Ξ̄
∂α

∂ �B

∂α
⊗ ∂Ξ̄

∂ �H
. (43)

The derivatives in Eqs. (36) to (43) are given in Appendix D.
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Figure 7: Idealized ferrimagnetic hysteresis with local description

6 Ferrimagnetic hysteresis effects

The presented constitutive model has to be extended to approximate ferrimag-
netic hysteresis behavior. The modifications are:

• Introduction of local magnetic field quantities

• Extended switching criterion Φ

The ferrimagnetic hysteresis curve is divided in two separate curves in the
first and third quadrant, see Fig. 7. For the approximation a local coordinate
system is introduced. Its origin is in the center of the partial hysteresis. The
horizontal offset is defined with the parameter �H0. The local field quantities
marked with superscript L are defined as

�HL = �H − �H0 g e (44)

�HLi = �H i + �H i
s g e. (45)

The scalar valued variable g = sign( �H ·e) gives the sign of the offset. The offset
�B0 has not to be specified, because the magnetic flux density is determined by
the constitutive equations. The local quantities �HL and �HLi are applied for
a local free energy function

ρψL =
1

2
(E − Ei) : � : (E − Ei) +

�H i · e
H i

s

(E − Ei) : � · �HL

− 1

2
( �HL − �HLi) · μ ( �HL − �HLi) + ρψ̄( �HLi) (46)
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which leads to local dissipation inequality

D = ΞL · �HLi ≥ 0 (47)

with

ΞL = −
(

2
Es

( �H i
s)

2

∂ρψL

∂Ei
: I ( �HLi − �H i

s g e) +
∂ρψL

∂ �HLi

)
. (48)

It is noted that �H i = �HLi − �H i
s g e is used in the one-to-one relation (9).

The yield criterion is modified to provide reversible behavior in the global
origin �H = 0. Here the sign of g changes. The modified yield criterion reads

ΦL = sign( �Mmax − ‖ �ML‖) ΞL · ΞL

( �Mc)2
− 1 ≤ 0 (49)

with �Mmax = �Mc + k �H i
s + a/arctanh(1/b). The vector �ML = μ( �HL − �HLi)

denotes the uncoupled magnetization. For ‖ �M‖ > �Mc the sign function is
negative and reversible behavior is ensured. With the Eqs. (46), (49), and the
arguments of Section 4 the evolution equation

�̇HLi = 2 λ sign( �Mmax − ‖ �ML‖)Ξ
L

�Mc

(50)

is developed. Analog to Section 4.1 the implicit Euler scheme is applied for the
intergration of Eq. (50). The expanded model has no effect on the formulation
of the algorithmic consistent tangent moduli of Section 5, because the sign
function vanishes with derivation.

7 Constitutive modelling of ferroelectric ce-

ramics

The presented constitutive model is applied almost unmodified for ferroelectric
ceramics. Here an additive split is done for the electric field with �E = �Er + �Ei.
Furthermore, �E and �Ei replaces �H and �H i in the free energy function Eq. (15).

The switching criterion depends on the coercive polarization �Pc. Due to the
phenomenology of ferroelectric ceramics the expanded model of Section 6 is
not applied. However, near the Curie temperature ferroelectrics show a similar
hysteresis behavior as ferrimagnetics, see Smith (2005).

8 Variational formulation and finite element

approximation

In this section the weak form of the coupled boundary value problem is derived.
The boundary value problem is given by the balance equations (1) and (2),
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the Neumann boundary conditions Eqs. (3) and (4), and Dirichlet boundary
conditions

u = ū on ∂uB0 (51)

φ = φ̄ on ∂φB0. (52)

It holds ∂B0 = ∂tB0

⋃
∂uB0, ∅ = ∂tB0

⋂
∂uB0, ∂B0 = ∂ςB0

⋃
∂φB0 and

∅ = ∂ςB0

⋂
∂φB0. The weak form δπ is obtained by multiplying Eqs. (1) and

(2) with the test functions δu and δφ. Integration by part and application of
the divergence theorem lead to

δπ =

∫
B0

∂ρψ

∂E
: δE +

∂ρψ

∂ �H
· δ �H − ρb · δu dV

−
∫

∂tB0

t · δu dA −
∫

∂ςB0

ςM · δφ dA = 0.

(53)

The virtual gradient fields are given by δE = 1
2
(∇⊗ δu + δu⊗∇) and δ �H =

−∇ δφM . The space of the test functions is assumed as

δU = {δu ∈ [H1(B0)]
3 , δu|∂uB0 = 0} (54)

δV = {δφ ∈ H1(B0) , δφ|∂φB0 = 0}. (55)

8.1 Element formulation

The finite element approximation is based on the discretization of the domain
B0 in nelem finite elements Be with B0 =

⋃nelm
e=1 Be. The shape functions for

the presented hexahedral element read

NI =
1

8

3∏
i=1

(1 + ξi
Iξ

i) with − 1 ≤ ξi ≤ 1 (56)

and
ξ1
I ∈ {−1, 1, 1,−1,−1, 1, 1,−1}

ξ2
I ∈ {−1,−1,−1, 1,−1,−1, 1, 1}

ξ3
I ∈ {−1,−1,−1,−1, 1, 1, 1, 1} .

(57)

Due to the isoparametric concept the same shape function are used for the
approximation of the geometry X and the unknown field quantities δu δφ,
respectively. This leads to

Xh
e =

8∑
I=1

NIYI and δdh
e =

[
δuh

e

δφh
e

]
= N δve. (58)

with N = [N1, N2, . . . , N8] and NI = diag[NI , NI , NI , NI ]. The vec-
tor δve = [δuT

1 , δφ1, δuT
2 , δφ2, . . . , δuT

8 , δφ8]
T consists of the unknown nodal
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degrees of freedom. The nodal coordinates are given by the vector YI . Con-
sidering the vector notation of Appendix A the approximated gradient fields
read [

δEh
e

δ �Hh
e

]
= B δve with B = [B1, B2, . . . , B8]. (59)

The matrices BI consist of derivations of the shape functions to the global
coordinates Xi. It holds

BI =

[
BIu 0
0 BIφ

]
with BIu =

⎡
⎢⎢⎣

NI,X1
0 0

0 NI,X2
0

0 0 NI,X3
0 NI,X3

NI,X2
NI,X3

0 NI,X1
NI,X2

NI,X1
0

⎤
⎥⎥⎦ and BIφ =

⎡
⎣NI,X1

NI,X2

NI,X2

⎤
⎦ .

(60)
The derivations NI,Xi

are obtained with ∇XNI = J−1
e ∇ξNI . The matrix Je

is the Jacobian given by

Je = ∇ξ ⊗ Xh
e with ∇ξ = [

∂

∂ξ1
,

∂

∂ξ2
,

∂

∂ξ3
]T . (61)

Considering the before mentioned interpolation the weak form on element level
is approximated by

δπh
e = δvT

e [

∫
Be

BT

[∂ρψ
∂E
∂ρψ

∂ 	H

]
− NT

[
ρb
0

]
dV −

∫
∂Be

NT

[
t

ςM

]
dA]

︸ ︷︷ ︸
Rh

e

. (62)

After assembly over all elements one obtain the global weak form δπh =⋃nelm
e=1 δπh

e with the global residual vector Rh =
⋃nelm

e=1 Rh
e and the global nodal

degrees of freedom δv =
⋃nelm

e=1 δve. Due to the nonlinear constitutive model
the equation δπh = 0 is solved iteratively. The unknown node values vn+1 for
the load step tn+1 are estimated by a Newton-Raphson scheme. The residual
vector Rh is expanded by a Taylor series which is truncated after the linear
term

R
h (K)
n+1 +

∂Rh (K)

∂vn+1

Δv
(K)
n+1 = 0. (63)

After each iteration step (K) the nodal degrees of freedom are updated by

v
(K+1)
n+1 = v

(K)
n+1 + Δv

(K)
n+1. The start value is obtained from the last state of

equilibrium v
(1)
n+1 = vn. The approximations of the incremental gradient fields

[ΔET
e , Δ �HT

e ]T = B Δve are analog to Eq. (59). The tangent stiff matrix on
element level reads

[KeT ]
(K)
n+1 :=

∂Rh (K)

∂vn+1

=

⎡
⎣∫

Be

BT
�̃B dV

⎤
⎦(K)

n+1

with �̃
(K)

n+1 =

[
�̃ �̃

�̃
T μ̃

](K)

n+1

(64)
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The algorithmic consistent tangent moduli �̃, �̃ and μ̃ for tn+1 are evaluated
with Eqs. (41)-(43).

The element formulation for ferroelectric ceramics is based on an equiv-
alent variational approach as applied for magnetostrictive alloys. Instead of
�H the electric field strength �E is used which is described with the electric
scalar potential φE, see Eq. (13). The local Gauss’ law (11) and the boundary
condition (12) replaces the solenoidality of the magnetic field and the cor-
responding boundary condition, see Eqs. (2) and (4). This leads to a finite
element approximation which differs only in the used field quantities from the
one of Section 8.1.

9 Numerical simulations

The developed finite element formulation is implemented in the finite element
code FEAP which is documented in Taylor (2008). In the following, different
examples are used to show the capabilities of the proposed constitutive model.
The first example deals with the nonlinear behavior of the magnetostrictive al-
loy Terfenol-D. The occurring hysteresis curves are compared with experimen-
tal data. An approximation of ferrimagnetic behavior is discussed in further
simulations. In the second example a specimen consisting out of a ferroelectric
ceramic is analyzed. The results show that the model is able to reproduce the
typical hysteresis curves of ferroelectric ceramics correctly. In the third exam-
ple an amplified magnetostrictive actuator is presented. To improve the design
it is optimized in a parametric study. In the fourth example a piezoelectric
hollow cylinder of soft lead lanthanum zirconate titanate is considered. The
borders of these cylinders tend to warp inwardly during polarization. This
effect will be discussed by means of the results. The fifth example deals with
a piezoelectric telescope actuator. The results of the nonlinear simulation are
compared with experimental data.

9.1 Magnetostrictive hysteresis

A simple example is used to illustrate the ability of the presented constitutive
model to account for magnetostrictive hysteresis phenomena. Here a cube of
Terfenol-D with an edge length of L = 20 mm is considered. The boundary
and loading conditions are given in Fig. 8. The magnetic loading is set with the
scalar potential φ̄M resulting in a homogeneous magnetic field in 3-direction.
The field strength is oscillated in a zigzag function between �H3 = −100 kA/m

and �H3 = 100 kA/m. The applied material parameters based on Dapino et al.
(2006) and Moffett et al. (1991) are given in Tab. 1. The resulting hysteresis
curves compared with the experimental data of Engdahl (2000) are depicted
in Fig. 9. Terfenol-D is a soft magnetic material. Thus, the range of linear
behavior is very small. Raising the magnetic field beyond the coercive value
�Mc results in an intense increase of �B3 and �E33 The growth slows down for
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Figure 8: Boundary and loading conditions for the Terfenol-D specimen

Terfenol-D
E1 = E3 = 29 GN/m2, ν12 = ν13 = 0.25, G12 = G13 = 11.6 GN/m2

�33 = 40.9 Vs/Am2, �13 = −43.95 Vs/Am2, �51 = 28.3 Vs/Am2

μ1 = μ2 = μ3 = 2.8025 · 10−6 Vs/Am
�Mc = 8.2 · 10−3 T, Ei

s = 1.08 · 10−3, �H i
s = 185 kA/m k = 1.03 μ3

a = 0.15/arctanh(1/b) T, b = 1.04

Table 1: Applied material parameters

values �H3 > 50 kA/m, because of the arctanh-term in the hardening function.
This leads to a saturation of the irreversible quantity α for magnetic fields
higher 80 kA/m. After unloading only low remanent values of �B3 and E33

are noticed. The ferromagnetic and butterfly hysteresis in Fig. 9 show good
agreement with the experimental data. It confirms that the model is able to
approximate the typical behavior of Terfenol-D.

A further aspect of this examples is the convergence behavior of the pre-
sented constitutive model. For this, a load step from �H3 = 5 kA/m to �H3 =
11 kA/m is considered, which is within a range of high nonlinear growing. The
interval is marked by dots in Fig. 9. The residua of the iteration processes
are used to evaluate the convergence rates. The norms of the residuum vector
R of the global iteration are listed in the first column of Tab. 2. A typical
local iteration is summarized on the right hand side. Therefore the residua of
Eq. (30) are considered. It is noted that quadratic convergence is obtained for
all residua.

Terfenol-D shows ferrimagnetic behavior for mechanical prestresses . The
presented simulations account for different values of the parameter �H0. The re-
maining parameters are modified according to Tab. 3. The results are given in
Fig. 10. Depending on the offset �H0 the separated hysteresis curves are shifted
differently, which represents qualitatively the occurring material behavior. As
mentioned before the model does not include the influence of the mechanical
prestress. For this reason the curves are not compared with experimental data.
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Figure 9: Ferromagnetic and butterfly hysteresis compared to experimental
data and the load step for convergence evaluation

iteration global iteration local iteration
‖R‖ Ra Rb

1 9.904572E + 01 −7.196267E − 02 1.052652E + 00
2 1.732041E + 02 −3.088828E − 02 9.670525E − 02
3 7.862738E + 00 −1.770798E − 03 1.616275E − 03
4 2.152431E − 02 −1.583016E − 06 4.965618E − 07
5 1.636638E − 07 −4.076455E − 13 4.820135E − 14

Table 2: Convergence of the local and the global iteration process

9.2 Ferroelectric hysteresis

This examples is concerned with the simulation of ferroelectric ceramics. A
cubic spezimen of lead lanthanum zirconate titanate (PLZT) is simulated. The
edge length is L = 10 mm. The boundary conditions are analogue to Fig. 8 but
φE is used instead of φM . The scalar potential φ̄E at the topside is oscillating
between ±800 V. The material parameters are given in Tab. 4. Fig. 11 shows
the resulting ferroelectric und butterfly hysteresis compared with the results
of Hwang et al. (1995). A good agreement for both curves is observed. PLZT
has a much higher coercive value than Terfenol-D which results in distinctive

Ei
s = 0.35 · 10−3, �H i

s = 125 kA/m k = 1.1 μ3

a = 0.1/arctanh(1/b) T, b = 1.05

Table 3: Modified material parameters of the hardening function for ferrimag-
netic behavior
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Figure 10: Ferrimagnetic and butterfly hysteresis for different parameters �H0

PLZT
E1 = E3 = 68 GN/m2 ν12 = ν13 = 0.35, G13 = 25.19 GN/m2

�33 = 50.116 C/m2, �13 = −14.96 C/m2, �51 = 38.148 C/m2

ε1 = ε2 = ε3 = 1.125 C/kN m2

�Pc = 0.405 · 10−3 C/m2 Ei
s = 1.44 · 10−3 �Ei

s = 0.215 kV/m k = 0.9998 ε3

a = 0.0005/arctanh(1/b) C/m2, b = 1.04

Table 4: Applied material parameters for PLZT

remanent values of �D3 and E33.

9.3 Amplified magnetostrictive actuator

The displacements which can be achieved with magnetostrictive and piezo-
electric materials are only small. Different approaches are used to increase the
working range of actuator devices. One possibility is a mechanical amplified
actuator. An optimized design for such an device is discussed in the following
example. The amplification is accomplished by a special frame, which increases
the achieved displacements of the device, see Fig. 12.

The dotted outline represents the undeformed initial state. With applica-
tion of a magnetic field the magnetostrictive element in the center changes its
length. The magnetic field is induced homogeneously by a surrounding coil,
which is not shown in the plot. The contraction of the magnetostrictive rod
causes a movement w of the adapter plates. This movement is higher than the
deformation of the active material. In the following an own design is discussed
which is based on an actuator of Energen, Inc. The used active material is
Terfenol-D. The influence of the height of the frame on the mechanical proper-
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Figure 11: Ferroelectric und butterfly hysteresis compared to experimental
data

Terfenol-D

aluminum
adapter

plate

Figure 12: Functioning of an amplified actuator

ties of actuator is examined in a parametric study. The aim is to determine the
optimal design for maximal amplitudes of displacement and force. The chosen
geometry and finite element mesh are given in Fig. 13. The Terfenol-D rod has
a length of 50 mm and a diameter of 14 mm. With respect to symmetry only
an eighth of the actuator is modeled with 654 hexahedral elements. This area
is depicted white in Fig. 13. The simulations have shown that a further mesh
refinement has no significant impact on the results. The displacements perpen-
dicular to the symmetry plane are fixed at the symmetry borders. By setting
the scalar potential φM = φ̄M at one end of the Terfenol-D rod a homogeneous
magnetic field in the rod is applied. The maximal field strength is 100 kA/m.
The material parameters for Terfenol-D are given in Tab. 1. The character-
istics of aluminum are modeled with E = 75000 N/mm2 and ν = 0.33. The

deformed structure for �H3 = 100 kA/m is depicted in Fig. 14. The influence
of the height h2 on the maximal displacements w is tested in the first part of
the parametric study. The driven load cycle for �H3 is 0, 100 kA/m, 0. The
height h2 is varied between 38 mm and 44 mm. The resulting load displacement
curves are depicted in Fig. 15. The nonlinear material model causes hysteresis
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Dimensions: l = 61 mm, b = 30 mm, h1 = 34 mm
t1 = 1 mm, t2 = 2.2 mm

Figure 13: Geometry and finite element mesh of the presented actuator
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Figure 14: Deformed structure for �H3 = 100 kA/m und h2 = 41 mm, the
displacements are scaled by factor 30

effects for w, which affect in particular the range between 10 to 70 kA/m. The
amplitude of the hysteresis depends on h2. The maximal values of w can be
achieved by devices with a height h2 = 41 mm. Higher values of h2 decrease
the maximal displacements.

The second aspect of this example is the influence of the height h2 on the
forces F2 which can be achieved with the actuator. In this case a working point
of �H3 = 50 kA/m is considered. First of all the Terfenol-D rod is magnetized
with a field strength of 100 kA/m. Then the load is reduced to the working
point. Now the adapter is fixed in w-direction at the current deformed position
and a further load cycle between 25 and 75 kA/m is driven. The reaction forces
F2 at the adapter plates are plotted in Fig. 16. Again hysteresis effects are
observed arising from the nonlinear constitutive model. An increasing height
h2 causes higher forces F2. But a heightening above h2 = 46 mm has only low
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Figure 15: Displacements w for different values h2

effect on F2.
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Figure 16: Forces at the adapter for different values h2

9.4 Piezoelectric hollow cylinder

A piezoelectric hollow cylinder of soft lead zirconate titanate (PZT) is consid-
ered. The borders of these cylinders tend to warp inwardly during polariza-
tion. This behavior will be discussed and the results will be compared with
simulations of Laskewitz et al. (2006). The geometry, boundary and loading
conditions are depicted in Fig. 17. With respect to rotational symmetry only
one element is used in circumferential direction. The material parameters are
chosen analog to Laskewitz et al. (2006), see Tab. 5. The local 3-direction of
the material and the polarization direction e are parallel to radial direction
r. Fig. 18 shows the deformed structure scaled by factor 30. In Fig. 18a) the
cylinder is maximal loaded with φ̄E = 4.5 kV. Fig. 18b) depicts the structure
after unloading. In both cases a warping of the upper boundary inwardly is
noticed. This behavior can be explained with the logarithmic distribution of
the electric potential in radial direction which results from the analytical solu-
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:

Figure 17: Geometry and finite element mesh of the presented actuator

E1 = E3 = 0.06 MN/mm2, ν12 = ν13 = 0.396, G13 = 0.02149 MN/mm2

�33 = 21.796 · 10−6 C/mm2, �13 = −6.571 · 10−6 C/mm2

�51 = 12.464 · 10−6 C/mm2

ε1 = ε2 = 1.27796 · 10−9 C/MN mm2 ε3 = 0.74409 · 10−9 C/MN mm2

�Pc = 7.4409 · 10−9 C/mm2, Ei
s = 1.2 · 10−3, �Ei

s = 38.9736 MN/C, k = 1.00001 ε3

a = 0.2 · 10−8 C/mm2, b = 1.0

Table 5: Applied material parameters for the hollow cylinder

tion of the governing Laplace equation ∇2φE = 0. The electric field �E3 at the
inner boundary is higher than �E3 at the outer boundary. This causes a higher
piezoelectric contraction inboards.

In Fig. 19 the normalized polarization |α| is plotted versus r. The results of
Laskewitz et al. (2006) are given for comparison. At full loading the material
is completely polarized across the entire width, see Fig. 19a). With unloading
the outer area begins to depolarize as depicted in Fig. 19b). Here the presented
results show a smoother transition compared to Laskewitz et al. (2006) which
is caused by the arctanh function in the hardening function. In Fig. 20 the
ferroelectric hysteresis are plotted at the discrete positions (I) and (II) marked
in Fig. 19. The dotted part of the curve is the passed range. In (I) the electric
field rises much higher than in (II). Furthermore in (I) a positive electric field
remains after unloading whereas a negative one is noticed in (II). This negative
electric field causes the slight depolarization at the outer boundary. A similar
behavior is noticed for the relating butterfly hysteresis, see Fig. 21. Here the
strain component E33 and accordingly the transversal contraction are much
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Figure 18: Deformed cylinder scaled by factor 30 compared with undeformed
structure: a) at maximal loading φ̄E = 4.5 kV, b) after unloading φ̄E = 0

higher in (I) than in (II). So we have a remaining warping of the cylinder after
unloading.
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Figure 19: Normalized polarization r-direction: a) maximal loading φ̄E =
4.5 kV, b) after unloading φ̄ = 0
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Figure 20: Ferroelectric hysteresis at (I) and (II)
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9.5 Piezoelectric telescope actuator

Telescope actuators are a common design for actuators. They consist of con-
centric cylinders connected by end-caps. The idea of the design is an alternat-
ing contraction respectively extension of the cylinders by an electric loading
to amplify the achievable displacements. In this example a telescope actua-
tor fabricated by injection molding is discussed. The design is presented by
Alexander et al. (2001). The geometry with dimensions and outer diameters
are depicted in Fig. 22. With respect to symmetry only a quarter of 90 ◦

is meshed with 430 hexahedral elements. The examined displacement is w.

Dimensions in mm, wall thickness = 1 mm

Figure 22: Geometry and finite element mesh of the telescope actuator

The applied material parameters for the ferroelectric ceramic MSI-53HD are
given in Tab. 6 and are estimated on the basis of Alexander et al. (2001).
The privileged 3-direction of the material points is the radial direction. Un-
like the conventional manufactured actuators the injection molded design is
polarized after fabrication. To polarize the cylinders a radial electric field of
E3 = 1200 V/mm is applied. Later on an electric field of E3 = 300 V/mm is
used for the working mode. The electric potential is applied by nickel elec-
trodes as depicted in Fig. 23a). The resulting deformation scaled by factor
100 is given in Fig. 23b). The displacement w is plotted across the electric

field for the loading cycle �E3 = 0, 300 V/mm, -300 V/mm, 0. The results are
depicted in Fig. 24. Due to the nonlinear constitutive law hysteresis effects are
observed in the plot, which show good agreement with the experimental results
of Alexander et al. (2001). The linear analytical solution of Alexander et al.
(2001) can not reproduce hysteresis effects. It is noted that the presented
results are moved by 9.545 µm to account for the deformation following from
the polarization process. The nonlinear behavior results from a depolariza-
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E1 = 60606 N/mm2, E3 = 48310 N/mm2, ν12 = 0.290, ν13 = 0.408
G13 = 22990 N/mm2

�33 = 10.63 · 10−6 C/mm2, �13 = −29.88 · 10−6 C/mm2, �51 = 27.26 · 10−6 C/mm2

ε1 = ε2 = ε3 = 1.0693 · 10−14 C/N mm2

�Pc = 0.7693 · 10−8 C/mm2

Ei
s = 1.2 · 10−3, �Ei

s = 17.63507 V/mm, k = 1.006 ε3

a = 0.0099 · 10−6/arctanh(1/b) C/mm2, b = 1.0005

Table 6: Applied material parameters for MSI-53HD

tion during the loading cycle. In Fig. 25a) the normalized polarization in the

cylinders is plotted for �E3 = 300 V/mm. In the cylinder 2 and 4 the elec-
trical field points opposite to the direction of polarization. As a result the
polarization decrease to 95%. For a loading in the opposite direction with
�E3 = −300 V/mm the remaining cylinders are depolarized, see Fig. 25b). This
depolarization of the cylinders is completed after one load cycle. A recurring
minor hysteresis obtained in Alexander et al. (2001) can not be approximated,
since this behavior is not considered within the constitutive model.

-0.15 -0.05 0.05 0.15 0 2 4 6 8 10 12 14 16

a) b)

Voltage U [V] Displacements w [µm]

Figure 23: Energized actuator, �E = 300 V/mm: a) loading condition b) de-
formed actuator, displacements scaled by factor 100

10 Conclusion

In this paper a nonlinear constitutive model for magnetostrictive and piezo-
electric materials is presented. Beside the general approach an additive split
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Figure 24: Hysteresis behavior of the telescope actuator in comparison with
Alexander et al. (2001)

of the field strength in a reversible and an irreversible part is a novel aspect
of the proposed macroscopic model. The irreversible part serves as internal
variable describing the domain state of the material. The additive split of
the field strength allows a consistent finite element approximation employing
displacements and scalar potential as independent variables. The irreversible
strains which arises from domain switching processes are determined by the
irreversible field strength with a one-to-one relation. The model is embedded
in a thermodynamic consistent framework, which is based on the definition of
a free energy function and a switching criterion. It is able to reproduce the
ferroelectric and butterfly hysteresis of ferroelectric ceramics. For the simu-
lation of magnetostrictive materials an expansion is proposed which includes
ferrimagnetic behavior. The model is incorporated in a finite element formu-
lation. The algorithmic consistent tangent moduli are given in closed form. In
the presented numerical examples the results are compared with experimental
data, which demonstrate the capability of the formulation.
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Figure 25: Polarisation in the actuator: a) �E = 300 V/mm b) �E = −300 V/mm

A Vector notation and linear material con-

stants

Vector notation of the strain and stress tensor:

E = [E11, E22, E33, 2E23, 2E13, 2E12]
T (65)

S = [S11, S22, S33, S23, S13, S12]
T (66)

Elasticity tensor in matrix form:

�
−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
E1

−ν12

E1
−ν13

E3
0 0 0

−ν12

E1

1
E1

−ν13

E3
0 0 0

−ν13

E3
−ν13

E3

1
E3

0 0 0

0 0 0 1
G13

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(67)

with G12 = E1

2(1+ν12)
.

Piezomagnetic respectively piezoelectric couple tensor in matrix form, mag-
netic permeability and electric permittivity:

� =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 �13

0 0 �13

0 0 �33

0 �51 0
�51 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ , μ =

⎡
⎣μ1 0 0

0 μ2 0
0 0 μ3

⎤
⎦ , ε =

⎡
⎣ε1 0 0

0 ε2 0
0 0 ε3

⎤
⎦ (68)
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B Scalar valued conjugated variable to the in-

ternal variable

Ξ̄ = − I :
[
� : I 2 α3 Es − � · �H 3 α2 −� : E 2 α

] Es

�H i
s

− �H · �T :
[
E − I Esα

2
] 1

�H i
s

− e · μ( �H − e �H i
s α)

− ∂ρψ

∂ �H i
· e �H i

s (69)

∂Ξ̄

∂α
= − 2

Es

�H i
s

I :
[
� : I 3 α2Es − � · �H 3 α −� : E

]
+ e · μ e �H i

s −
∂ρψ

∂ �H i
· e �H i

s (70)

(71)

C Derivatives for the integration algorithm

∂R
(k)
a

∂αn+1

= 1 − γ
2

�M2
c

∂Ξ̄n+1

∂αn+1

(72)

∂R
(k)
a

∂γ
= −γ

2 Ξ̄n+1

�M2
c

(73)

∂R
(k)
b

∂αn+1

= γ
2 Ξ̄

�M2
c

∂Ξ̄n+1

∂αn+1

(74)

∂R
(k)
b

∂γ
= 0 (75)
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D Derivatives for the algorithmic consistent

tangent moduli

∂S

∂α
= −� : I 2 Esα + � · �H (76)

∂ �B

∂α
= �T : E − �T : I 3 Esα

2 + μe �H i
s (77)

∂Ξ̄

∂E
=� : I 2

Es

�H i
s

α − � · �H
1

�H i
s

(78)

∂Ξ̄

∂ �H
= −�T :

[
E − 3 Ei

] 1

�H i
s

− μ e (79)
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