
Karlsruher Institut für Technologie

Institut für Baustatik

Dielectric Elastomers -

Numerical Modeling of

Nonlinear Visco-Electroelasticity
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Abstract

Dielectric elastomer actuators, which can directly turn electrical energy into mechanical
energy belong to the group of electroactive polymers (EAP). This type of electroelastic
material exhibits large displacement characteristics, and is able to change its mechanical
behavior in response to the application of an electric field. Dielectric actuators are made
out of elastomers which in general show viscoelastic behavior. To take this time dependent
effect into account, the deformation gradient is multiplicatively decomposed. The paper is
focused on the numerical modeling of soft dielectric elastomers. The theoretical foundation
and the consistent finite element implementation is outlined based on the laws of electricity
and elasticity. Furthermore, numerical examples of the nonlinear visco-electroelasticity
model are shown.
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1 Introduction

In recent decades, great efforts have been directed towards the development of active and
multifunctional materials. These materials have the potential to transform passive struc-
tures into adaptive systems. An overview is given in [1, 2, 3]. However, a prerequisite
for the design and the optimization of these materials is that reliable models exist, which
incorporate physical processes.
Polymeric electroelastic materials, or electroactive polymers, have the following charac-
teristic: they deform by the application of an electric field. The benefit of EAPs is that
they share the characteristics of polymers; they are lightweight, inexpensive in production,
fracture tolerant and elastic. Furthermore, the physical and chemical structure is well un-
derstood. Due to the similarities with biological tissues in terms of achievable stresses and
forces, they are often called artificial muscles. Products will gain new dimensions ranging
from changing tactile surfaces over active membranes to morphing shapes.
The designation electroactive polymer is a generic term for different active polymeric mate-
rials. A good overview can be found in [8, 9, 10, 11]. Based on their mechanism to deform,
EAP‘s can be divided into two major categories: electronic/electric or field activated and
ionic activated EAP‘s. Also referred to as dry and wet EAP’s. De novo, Electric EAP’s
are subdivided into electrostrictive polymers, ferroelectric polymers, polymer electrets,
and dielectric elastomers [4, 6]. The deformation originates due to two electromechanical
stresses, the Maxwell stress and the electrostriction. The Maxwell stress emerge due to
electrostatic force between electric charges. This force is discussed in Coulombs law. A
brief recapitulation is given in section 2. The influence of the electristriction goes back
to the intramolecular forces. The stress caused by electristriction is small against the
Maxwell stress [5]. In contrast to electronic EAP‘s, the ionic EAP’s are driven by diffu-
sions and intermolecular movements of ions. They consist of two electrodes, an electrolyte
and the activatable material. One of their advantages is the use of a low activation voltage
(1−2V/μm), instead of high activation voltage by dry EAP’s (in orders of 10−100V/μm).
The focus in this paper is on the numerical modeling of the dielectric elastomers (DE). Soft
dielectric elastomers have the character to be able to produce large strains while sustaining
moderate forces by applying an electric field. The principle setup of DE’s is a soft dielectric
material arranged between elastic, conductive electrodes. The electrodes have to be highly
compliant to ensure that they don‘t impede the deformation. In the past the influence
of the Maxwell stress was treated as a perturbing effect, because of the nearly neglecting
induced stresses. Owing to the consistent development of polymers this point of view has
changed, through the development of polymers with lower elasticity and higher dielectric
strength. Now it is possible to realize actuator applications. DE’s can also be used as
sensors. By applying a force or a displacement, an electric field will be produced. As it
is mentioned above the electronic polymers require a high electric field for activation. To
deal with moderate fields, the dielectric elastomer actuator thickness have to be film-like.
Another option to reduce the high activation fields is to use polymers with high dielectric
constants. This can be performed by filling polymers with highly dielectric components for
example ceramics. Several possible actuators/sensors configurations have been developed;
tube, roll, helical, bi-, unimorph bender, stapled, folded, diaphragm and planar. All of
them use the fact, that the film is squeezed in the direction of the electric field. This
causes expansion in the transverse planar direction because of the nearly incompressibility
character of the elastomer. Section 2.1 and 2.2 introduce the basic mechanical- and elec-
trodynamic equations. As mentioned above a brief recapitulation of the acting forces is
given at the end of this subsections. Details can be found for example in [12, 26, 27]. The
next subsections bring the two theories together with the assistance of the Maxwell stress
and the coupling in the free energy function, see also [28, 29, 30, 31, 23, 24, 32]. In sec-
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tion 3 the fundamental equations are repeated. Furthermore the formulation for the finite
element implementation is prepared based on a variational approach [25]. To incorporate
viscoelasticity, the deformation gradient is multiplicatively decomposed into an elastic and
an inelastic (viscous) part. This is based on the concept published by [13, 14, 15, 16]. The
free energy function is additively decomposed into an elastic and inelastic part. The elastic
and inelastic part is derived from a potential which is reasonable for rubber-like materials
[17]. Other approaches can be found in [18, 19, 20, 36, 37]. The solution strategy of the
multiplicative split is summarized in subsection 3.3. In all its elaborateness it is pointed
out in the preceding references. In section 2 and 3 the theoretical background is presented
in detail. In section 4 numerical examples are given. In this section a free energy function
is used which was first introduced in [12, 28]. In the first example a spherical shell is
considered. To validate the numerical model without viscous effects a solution is found for
two different boundary conditions with MAPLE

TM1[38] and compared with the numerical
model. A plate with a hole under electrical loading for several relaxation times is discussed
in the second example. Finally a coiled actuator under the influence of a sinusoidal loading
with various frequencies is demonstrated. The paper is concluded with a summary and
an outlook.

2 Basic equations

2.1 Kinematics

Let us consider a deformable electrically sensitive body with its reference configuration
B0 in the absence of electric fields and mechanical loads. This is known as stress-free
configuration. The region in three-dimensional Euclidean space of R

3 is occupied by the
body. The boundary of B0 is denoted by ∂B0. The position vector of a particle within
this body in the reference configuration is given by �X. In the deformed configuration, the
position of the particle is denoted by �x = �χ( �X) and this particle occupies the current
configuration Bt. �χ is a one to one, twice continuously differentiable mapping. The
boundary of Bt is referred to as ∂Bt. In this paper lower case operator symbols and letters
for formula symbols generally operate with respect to the current configuration. Upper
case operator symbols and letters for formula symbols generally operate in accordance
with the reference configuration. Vectors are denoted bold-faced with an arrow above the
letter. Second order tensors are denoted bold type. For higher order tensors, blackboard
bold typeface is used. The deformation gradient

F = Grad (�χ) with J = det (F ), (1)

consisting of the gradient with respect to the reference configuration, describes the change
of movement within the close surrounding of the material particle �X. For its determinant
J one has J > 0. It shall use the notation F−T = (F−1)T . The gradient operator of a
vector field is acting at the current configuration which is given as grad(. . . ) = ∂(... )i

∂�xj

�ii⊗�ij ,

and is defined as Grad(. . . ) = ∂(... )i

∂ �Xj

�ii ⊗�ij with respect to the reference configuration. In
this contribution the symbol ⊗ stands for the tensor product and the Einstein summation
convention over repeated indices is used. For the base vectors, cartesian coordinates are
used and �ii · �ij = δij . Whereby δij is the Kronecker delta, which is one for repeated
indices and otherwise zero. The dot represents the inner product. The right and left

1Maple is a trademark of Waterloo Maple Inc.
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Cauchy-Green symmetric deformation tensors are associated with F and defined by

C = F TF =
3∑

A=1

λ2
A
�NA ⊗ �NA and b = F F T =

3∑
A=1

λ2
A �nA ⊗ �nA, (2)

respectively. It holds det(b) = det(C) = J2. In addition, the principal stretches λA, A =
1, 2, 3 are related to the determinant of F based on J = λ1λ2λ3. The orthonormal vec-
tors, characterized by �nA and �NA, denote the direction of the stretch in the current and
reference configuration, respectively.
The spatial total time derivative is given by ∂

∂tχ(�x, t)|�x−fixed and the material derivation
to ∂

∂tχ(χ−1( �X, t), t)| �X−fixed
, respectively. The material velocity gradient is given as

Ḟ = Grad(�̇x), and l = Ḟ F−1 = grad(�̇x) (3)

denotes the spatial velocity gradient. Where ( ˙...) designated the material time derivative.
In consideration of viscoelasticity, the ”total” deformation gradient F is multiplicatively
decomposed into an elastic part Fe and a viscous part Fv,

F = FeFv. (4)

This split can be interpreted in case of a theory of small deformations as an additive split
of the strain ε = εe + εv and can be compared with a rheological model which consist of
a spring parallel-connected with a stated number of Maxwell elements. The elastic right
and left Cauchy-Green tensor are expressed as follows

Ce = F−T
v CF−1

v and be = F C−1
v F T . (5)

Elastomers behave nearly incompressible. Hence, for the numerical modeling it is common
to decompose multiplicative the deformations gradient into a volumetric Fvol = J1/3I and
an isochoric part Fiso = F̃ , with det[F̃ ] = det[λ̃1λ̃2λ̃3] = 1. Herein, I = δij�ii ⊗�ij denotes
the second order identity tensor and λ̃A = J−1/3λA, A = 1, 2, 3 characterize the purely
isochoric principal stretches. In the course of this contribution the following definitions
for the isochoric C̃ and the isochoric elastic right Cauchy-Green tensor C̃e are needed

C̃ = J− 2
3 C =

3∑
A=1

λ̃2
A
�NA ⊗ �NA and C̃e = J

− 2
3

e Ce =
3∑

A=1

λ̃2
Ae

�NA ⊗ �NA. (6)

Here, Je = λ1eλ2eλ3e describes the determinant of Fe and λ̃Ae, A = 1, 2, 3 are the principal
values of C̃e = F̃ T

e F̃e = J
−2/3
e F T

e Fe.

2.2 Electrostatic Equations

The four Maxwell equations describe the behavior of electric and magnetic fields. These
relations cover interactions with matter, too [12]. This contribution discuss dielectrics
which can be polarized by an applied electric field. Assuming that the considered material
owns no free charges ρf , shows no response to magnetic fields or magnetic induction and
considering a quasistatic process, the Maxwell equations can be reduced to:

curl(�e) = �0 and div( �d) = 0 (7)

4



In addition the rotation-operator is defined as curl(. . . ) = εijk
∂(... )j

∂�xi

�ik and the divergence-

operator of a vector field is hereby assigned with div(. . . ) = ∂(... )i

∂�xi
. Where E = εijk�ii ⊗

�ij ⊗�ik is the third-order permutation tensor.
The fields �e and �d are the electric field and the electric displacement field, respectively.
These are Eulerian vector fields. The Lagrangian versions are defined by

Curl( �E) = �0 and Div( �D) = 0. (8)

The “pull-back” operation of the vector fields �e and �d reads

�E = F T �e and �D = JF−1 �d, (9)

respectively. In consequence of the conservative electric field, it can be expressed by a
scalar field φ, called the potential of the electric field

curl(�e) = �0 ⇒ �e = − grad(ϕ) and Curl( �E) = �0 ⇒ �E = −Grad(φ). (10)

The scalar fields are composed together with φ = ϕ(�χ( �X , t)). Note that the negative sign
is a convention.
Inside a dielectric material an applied electric field minimally separates the atomic nucleus
and the electrons and it arise induced dipole moments. These moments align in the
direction of the applied field. The dipole moments located on the microscopic scale are
called on the macroscopic scale density of the electric dipole moments or polarization
density, denoted by �p. This quantity differs from zero only in electrically polarized matter
and it’s associated with the electric displacement field �d via the electric field �e through

�d = ε0�e + �p and �D = ε0JC−1 �E + �P , (11)

where �P = JF−1�p has been used. The permittivity of free space ε0 has a defined value
given approximately by 8.85419·10−12 Fm−1 (measured in farads per meter). In a vacuum
the electric displacement is related to the electric field by �d0 = ε0�e0 or in the Lagrangian
version through �D0 = ε0JC−1 �E. The polarization density, or briefly speaking the polar-
ization �p could represent nonlinear or history dependent material behavior �p(�e, ...) and
as a result of Eq. (11), �d(�e, ...), too. Here, this quantity will be only a function of the
deformation F and electric field �e,

�p = �p(�e,F ) and �P = �P ( �E,F ). (12)

Hence, a deformation process or/and an applied electric field could cause polarization and
electric displacement.
Compared with this, in a linear, homogeneous, isotropic dielectric material the relation
between the electric field and the polarisation results in �plin. = ε0(εr −1)�e. Here εr stands
for the material specific relative permittivity (or dielectric constant). This parameter is
only a static or scalar valued quantity for isotropic material, constant temperature and
constant frequency. Plug in Eq. (11)1 it follows:

�dlin. = ε�e and with Eqs. (11)1,2
�Dlin. = εJC−1 �E. (13)

Here ε = ε0εr represents the absolute permittivity.
In an electrically sensitive body an applied electric field is confined to polarization or
electric displacement. An external electric field produces electrostatic forces �fe in the
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Bt

�e

P k

P k

Ck

qkα

�xk

�xk

�xkα

�ξ kα

Figure 1: Macro- and microscopic scale of the considered body Bt

continuum body Bt. This volume force �fe can be derived from a microscopic scale. For
this scale it is assumed that only pointwise sources exist. For the physical model a particle
P k of the current configuration Bt at position �xk is considered (see Figure 1). This
particle contains elementary electric charge qkα with mass mkα at specific location �ξ kα

relative to the mass center Ck. At this level each randomly distributed charge within a
particle interacts with other charges �ei and reacts on external electric fields �e. For further
derivation internal interactions between the charges and influence of the gravitation field
are neglected. Due to this the Lorentz force is given by �f α

L = qkα�e(�xkα). The external
electric fields is expanded in a Taylor series, �e(�xkα) = �e(�xk) + grad(�e) �ξ kα + . . . , around
xk and a resultant electric force within the particle �f k

e can be derived by neglecting higher
order terms

�f k
e =

n∑
α=1

qkα(�e + grad(�e) · �ξ kα) (14)

with qk =
∑n

α=1 q
kα and �p

k =
∑n

α=1 q
kα�ξ kα follows �f k

e = qk�e + gradT (�e)�pk. Here qk

and �p denotes the sum of the charge and polarisation within the particle P k, respectively.
Performing a simple space averaging leads to the macroscopic electric force per unit volume
�fe = ρf�e+gradT (�e) �p. Where ρf is the free charge density and �p the polarization density.
This article assumes a material with no free charges and in this way it follows

�fe = gradT (�e) �p. (15)

2.3 Equilibrium, stress and constitutive laws

For the sake of simplicity the further equations are given with respect to the current
configuration. The mechanical body force density �fm as well as the acceleration are
assumed to be zero. Then from the momentum balance principles the Cauchy equation of
equilibrium can be deduced and reads

div(σ) + �fe = �0. (16)

In the equation above, σ and �fe stand for the Cauchy stress tensor and the electric body
force per unit current volume, respectively. The electric body force can be expressed as
the divergence of a tensor, the electric, cauchy type, stress tensor τe

�fe = div(τe), (17)

which is defined by

τe = �e ⊗ (ε0�e + �p) − 1
2
ε0(�e · �e)I = ε0

(
�e ⊗ �e − 1

2
(�e · �e)I

)
︸ ︷︷ ︸

τM

+�e ⊗ �p. (18)
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The first two terms in the latter equation denote the symmetric Maxwell stress tensor τM .
The last term depends on the polarization of the considered material. A total Cauchy
type stress tensor τ is introduced,

τ = σ + τe. (19)

Therefore the Cauchy equation of equilibrium becomes

div(τ ) = �0. (20)

It can be shown that Eq. (20) fulfills Cauchy‘s second equation of motion (balance of
angular momentum)

E : τ = �0. (21)

accordingly, the latter equation is no longer a constitutive equation and it follows that τ
is symmetric. The two dots characterize the double contraction. Pull-back operations re-
lating to τ , lead to P̂ = JτF−T and T = JF−1τF−T . Representing stress tensors of the
first- and second Piola-Kirchhoff type, respectively. The mechanical part of the stress is de-
fined by the first, P = JσF−T , or second Piola-Kirchhoff stress tensor, S = JF−1σF−T .
For better legibility, further deliberations are given only with respect to the reference con-
figuration.
There are different ways to introduce the constitutive equations. We will follow the
methodology by Coleman and Noll [21], [22] to find the imposed conditions by the second
law of thermodynamic. In this paper the electric field �E and the deformation F are the
independent primary variables. For the internal dissipation inequality holds

Dint = −ρ0ψ̇ − �P · �̇E + [P + F−T �E ⊗ �P ] : Ḟ +
m∑

k=1

Ξk : α̇k ≥ 0. (22)

Within Eq. (22) denotes ψ the Helmholtz free energy and ρ0 the reference mass density.
The latter term on the left-hand side characterizes the internal dissipation Dvisco

int in the
material

Dvisco
int =

m∑
k=1

Ξk : α̇k ≥ 0 with Ξk = −ρ0
∂ψ

∂αk
. (23)

Inserting αk = kFv in Eqs. (22, 23) then Ξk can be interpreted as an nonequilibrium
viscous stress. In addition, it should be noted that k represents the number of internal
dissipation mechanism. In Eq. (22) ψ(F ,E, kFv) the free energy function depends on the
deformation, the referential electric field and the internal variable Fv. Plug in the material
time derivative of ψ in Eq. (22), it follows

−( �P + ρ0
∂ψ

∂ �E
) · �̇E + (P + F−T �E ⊗ �P − ρ0

∂ψ

∂F
) : Ḟ −

m∑
k=1

ρ0
∂ψ

∂ kFv
: kḞv ≥ 0. (24)

Here ψ is extended by the free energy in vacuum Espace to the augmented energy density
function Ω

Ω = ρ0ψ + Espace. (25)

The term of the energy in vacuum is determined by Espace = −1/2 ε0J( �E ⊗ �E) : C−1.
The free energy W contains the elastic energy Welast and the electric energy Welect. In
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the context of viscoelasticity the total energy Ω is additive enhanced by the viscoelastic
energy Wvisco. Note that for each internal dissipation mechanism k one energy function
kWvisco has to be specified, k is a positive integer and runs from one to m.

Ω =

Welel︷ ︸︸ ︷
Welast +Welect︸ ︷︷ ︸

W

+Espace +kWvisco. (26)

The elastic-electric energy part Welel is a function of the electric field and the deformation
and contains the energy of free space Espace. The viscous energy part kWvisco is only a
function of the viscous deformation.

Welel = Welel(C, �E) and kWvisco = kWvisco(kC̃e = kF−T
v C̃kF−1

v ). (27)

To fulfill the inequality Eq. (22) for all rates of �̇E, Ḟ and Ḟv the following constitutive
relations have to be satisfied or in other words, the use of the standard argument from
Coleman and Gurtin leads to

T = 2
∂Ω
∂C

, �P = −∂W
∂ �E

, Dvisco
int = −

m∑
k=1

∂ kWvisco

∂ kC̃e

:
∂ kC̃e

∂ kFv
: kḞv ≥ 0

and with Eq. (11)2: �D = − ∂Ω

∂ �E
. (28)

This reduced dissipation inequality, Dvisco
int , is transformed with some mathematical oper-

ations into

−kτ visco :
1
2
Lv(kbe) · kb

−1
e ≥ 0 with kτ visco = 2

∂ kWvisco

∂ kbe

kbe. (29)

Note that for further calculations and the numerical implementation m in Eq. (28)3 equals
one and for further derivations the superscript k is neglected. Here, τvisco is the viscous
Kirchhoff stress tensor. The notation Lv(be) signify the Lie derivative of the elastic left
Cauchy-Green tensor be = FeF

T
e along the velocity field of the material motion. A solution

strategy for Eq. (29) is given in subsection 3.3 or in detail in [13], [14]. Studying the free
energy function Ω, the viscous free energy Wvisco is only a function of the deformations.
However, the total stress τ is deduced from the whole deformation F .
With respect to isotropic material, Welel is a scalar-valued isotropic tensor function of the
two second-order tensor variables C and �E⊗ �E. The free energy function has to satisfy the
condition to be unchanged if the material and the electric field undergo a rotation around
a certain axis. Hence, Welel is expressed as a function of the three invariants according to
a hyperelastic material and three pseudo invariants of C and �E ⊗ �E. This integrity base
fulfills the above formulated condition and these are defined by

Ĩ1 = tr(C̃) = J−2/3I1, Ĩ2 = 1/2
[
tr2(C̃) − tr(C̃2)

]
= J−4/3I2, Ĩ3 = 1,

I4 = ( �E ⊗ �E) : I, I5 = ( �E ⊗ �E) : C, I6 = ( �E ⊗ �E) : C2. (30)

Herein, tr(...) stands for the trace of a second-order tensor. Another integrity base can be
found in [28],[29]. Welast contains the isochoric and volumetric part of the elastic energy
Wiso and Wvol, whereby Uvol = dWvol/dJ should be noted. An analytical study of the
nonlinear equations gives a short overview over the interesting physical phenomenon. The
electrical field produces polarization, ∂W/∂I4 �= 0. The electrical field produces stress,
∂W/∂I5 �= 0, the electrostrictive effect. The higher order tensor effect, ∂W/∂I6 �= 0, is
generally very small and normally not detectable in moderate fields [12].
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2.4 Free energy function

In order to perform our analysis it is necessary to determine the energy function Ω. As
already mentioned, the total free energy contains the elastic-electro energy part W , the
viscoelastic energy Wvisco and the term of the energy in vacuum Espace. It is assumed
that the partial derivations of W with respect to I4 and I5 are positive constants (W,4 =
c1, W,5 = c2). The derivation according to I6 is neglected (see also subsection 2.3).

Welast(λ̃1, λ̃2, λ̃3, J) =
1
4
κ

(
J2 − 1 − ln[J2]

)
+

n∑
p=1

μpe

αpe

(
λ̃

αpe

1 + λ̃
αpe

2 + λ̃
αpe

3 − 3
)

kWvisco(λ̃1e, λ̃2e, λ̃3e) =
n∑

p=1

kμpv

kαpv

(
λ̃

kαpv

1e + λ̃
kαpv

2e + λ̃
kαpv

3e − 3
)
, k = 1, ...,m

Welect(C, �E) = c1( �E ⊗ �E) : I + c2( �E ⊗ �E) : C

Espace( �E, J) = −1
2
ε0J( �E ⊗ �E) : C−1 (31)

Here μ > 0 and κ > 0 are interpreted as the shear modulus and the bulk modulus,
respectively. Through a specific choice of the dimensionless constant αp(...) (s. Eqs.(31)1,2)
and p it is possible to obtain Neo-Hookean-, Mooney–Rivlin-, and the Ogden material
model.

3 Finite element implementation

The finite element method requires the formulation of the balance laws in form of vari-
ational formulations. They are denoted in the strong form with respect to the current
and reference configuration. Two types of boundary conditions will be introduced. They
are known as the Dirichlet and Neumann boundary conditions, which correspond to the
displacement field �̄u and electric scalar potential φ, the surface electric charge ς̄, and the
total true traction vector �̄t on the current surface ∂Bt. By means of contrast, to this the
displacement field and electric scalar potential, the surface electric charge, and the total
nominal traction vector on the reference surface ∂B0 are named by �̄u and φ, ς̄ and �̄T .
The quantities (.̄..) are prescribed values which are necessary to solve the boundary value
problem. The surface boundary ∂B is regarded as a discontinuous boundary.
With regards to the boundary surface, a distinction is made between the mechanical ∂Bm

and electrical boundary ∂Be with ∂B = ∂Be ∪ ∂Bm. Therewith one has,

∂Bm = ∂�uB ∪ ∂�tB and ∂Be = ∂φB ∪ ∂ςB
with disjoint parts ∂�tB ∩ ∂�uB = ∅ and ∂ςB ∩ ∂φB = ∅. (32)

It should be mentioned that no surface charges ς̄ are considered and τ �n = �ta+τe�n. Where
�ta is the nonelectrical surface force per unit area.

3.1 Weak form

Multiplying the mechanical equilibrium Eq. (20) with the virtual displacement δ�u and
the Gauss law Eq. (8)2 with the virtual electric potential δφ and integration over the
volume of the considered body purveys the principle of virtual work. Here δ�u is the
kinematically admissible virtual displacement and δφ is the electrostatically admissible
virtual electric potential. For reasons of clarity and comprehensibility the following weak
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form is formulated in terms of the reference configuration

F(F(�u, δ�u),F(φ, δφ)) :=
∫
B0

Div(P̂ ) · δ�u dV +
∫
B0

Div( �D) δφ dV = 0. (33)

The use of integration by parts and following application of the divergence theorem, leads
to the weak form of the equations above with build-in in von Neumann boundary conditions

F =
∫
B0

P̂ : δF dV −
∫
B0

�D · δ �E dV

︸ ︷︷ ︸
Fint

−

⎡
⎢⎣ ∫

∂�tB0

�̄T · δ�u dA+
∫

∂ςB0

ς̄ δφ dA

⎤
⎥⎦

︸ ︷︷ ︸
Fext

= 0. (34)

The terms Fint and Fext denote the internal and external virtual work.

3.2 Discretization

For the use of the Finite Element Method (FEM) the continuous domain B0 is subdivided
into ne finite elements. The boundary ∂B0 is approximated by the surface of the outer
elements. Within the numerical implementation we use an eight-node hexahedral ”brick”
element. In each element the displacement field �u and the electrical potential φ are
approximated by the same shape functions NI . In this way the body Bh

0 is discretized by
ne elements. The nodal values of displacements and potential are represented by uI and
φI , so it holds

Fe
int =

nen∑
I=1

⎡
⎣δ�uI ·

∫
B0

P̂ Grad(NI)dV − δφI

∫
B0

�D · Grad(NI) dV

⎤
⎦ (35)

Fe
ext =

nen∑
I=1

⎡
⎢⎣δ�uI ·

∫
∂τB0

�̄TNI dA+ δφI

∫
∂ςB0

ς̄ NI dA

⎤
⎥⎦ . (36)

The isoparametric concept is used within this numerical implementation. Therefore, the
geometry and the mentioned primary variables are interpolated by the same shape func-
tions NI .

3.3 Derivation and integration of the evolution law

We take up Eq. (23)1 and one possibility to fulfill this inequality is, to transfer it in a
positive definite quadratic form through an fourth-order tensor, V−1. From this it follows,
that the evolution equation becomes

−1
2
Lv(be) · b−1

e = V−1 : τvisco. (37)

The simplest way that V−1 could take is

V−1 =
1

2ηiso

(
Π − 1

3
I ⊗ I

)
. (38)

Through this specific choice it det[Fv] = 1 is a priori satisfied. Here, ηiso represents the
isochoric material viscosity. Approximatively it holds τ = μv

ηiso
with μv = 1

2

∑N
p=1 μpvαpv

10



for each nonequilibrium mechanism and τ represents the relaxation time. As a result of
Eq. (46), Eq. (45) becomes

L(be) · b−1
e = − 1

ηiso
dev [τvisco] . (39)

Incidentally, dev [. . .] = (Π − 1/3 (I ⊗ I)) : [. . .] signify the deviatoric part of a second
order tensor in the Eulerian description. Along with the forth order unit tensor Π =
δikδjl�ii ⊗�ij ⊗�ik ⊗�il. In the usual computational context the statement of the problem
is regarded to be strain driven. Therefore the displacement is the primary variable. The
quantities Fe and Fv have to be known, in order to deduce the stress. It is assumed that the
deformation at the beginning of the time step [tn, tn+1] is known through the start values
{Ftn

, betn
}. The task is to determine the unknown kinematic tensors {Ftn+1

, betn+1
}. In

this way the stress can be deduced through the viscoelastic potential Wvisco. Note that in
the computational context it is more efficient to work with {Cvtn

} and {Cvtn+1
}, because

the abovementioned unknowns could be replaced by Eq. (5)2. To describe the viscoelastic
deformation the time derivative of the spatial elastic deformation tensor, ḃe, is used. If
we assume that all conditions are known at the beginning of the calculation, then the
problem can be divided into a purely elastic and viscous computation. Hence, this tensor
is decomposed into an elastic predictor and inelastic corrector

ḃe = lbe + (lbe)T︸ ︷︷ ︸
predictor

+ L(be)︸ ︷︷ ︸
corrector

. (40)

To obtain the solution, the problem is divided in two steps. The integration of the first step
is a priori satisfied, because all quantities are known. It follows betrial

= ftn+1
betn

ftn+1
. In

this context ftn+1
= F̃ F−1

tn
imply the relative deformation gradient. The total deformation

gradient F̃ within the iteration step is given due to the finite element approximation.
With Eq. (45) it can be shown that the second step is a first order homogenous tensorial
differential equation and can be solved for small time steps by the implicit (or backward)
Euler integration method

∫ tn+1

tn
(...) dt ≈ (tn+1 − tn)︸ ︷︷ ︸

Δt

·(...)

betn+1
≈ exp

[
− Δt
ηiso

dev [τvisco]
]

betrial
. (41)

Note that this is a first order accurate approximation. The equation above can be formu-
lated in principal directions λAe of the left elastic deformation tensor and reads

λ2
Aetn+1

≈ exp
[
− Δt
ηiso

dev [τvisco]
]
λ2

Aetrial
. (42)

So far there are three scalar equations which can be solved easily with the help of a local
Newton iteration, which is performed on element level.
Afterwards betn+1

=
∑3

A=1 λ
2
Aetn+1

�nAtrial
⊗ �nAtrial

and viscous Kirchhoff stress τvisco =∑3
A=1(∂Wvisco/∂λAetn+1

)λAetn+1
�nAtrial

⊗�nAtrial
can be calculated. Here �nAtrial

and λAetrial

arise from a eigenvalue analysis of betrial
. It holds �nAtrial

= �nAtn+1
.

3.4 Linearization

For an efficient numerical strategy to solve the nonlinear system of Eq. (35) and Eq. (36)
Newton’s method is used. Hence, the variational formulation F is expanded in a Taylor
series and truncated after the linear part ΔF

F + ΔF = 0. (43)

11



This requires the computation of a consistent tangent by a linearization of the set of
equations. The total traction �̄t and the surface charge ς̄ are treated as being independent
of the the deformation of the body. Therefore, only the internal work Fint needs to be
linearized by the following mathematical operation:

ΔF = Δ�uF(�u) + ΔφF(φ) =
d

ds
F(�u + sΔ�u)|s=0 +

d

ds
F(φ+ sΔφ)|s=0. (44)

Applying that to the variational formulation of the internal work, Equation (35) can be
rewritten as

ΔFe
int =

∫
B0

T : Δ�uδC dV +
∫
B0

δC : M : Δ�uC dV +
∫
B0

δC : K · Δφ
�E dV

+
∫
B0

δ �E · KT : Δ�uC dV +
∫
B0

δ �E · AΔφ
�E dV. (45)

The material version of the accompanying fourth, third and second order tensors M =
4 ∂2Ω

∂C∂C , K = −2 ∂2Ω
∂C ∂ �E

, KT = −2 ∂2Ω
∂ �E ∂C

and A = ∂2Ω
∂ �E ∂ �E

can be found in [23, 19] for the
elastic and electric energy function. Further calculations and the built in shape-functions
lead to the algorithmic tangent. Here N(...),k , k = 1, ..., 3 represents the derivation of N
with respect to the i-th direction. The linearization of the viscous part of the algorithm
tangent is not elucidated, which is relevant for the second term in Eq. (45). This issue
can be found in [13].

4 Numerical examples

The objective of this section is to show examples for the introduced nonlinear visco-
electroelastic model. In the context of visco-electroelasticity the material behavior appears
to deform permanently under the influence of an electrical loading. By analogy to the
permanent deformation under an mechanical loading, we will also speak from retardation.

4.1 Thick-walled spherical shell under an electric field

In the first example we consider a thick-walled spherical shell under the influence of an
electric field in order to validate the pure electroelastic model. Note that no viscous effects
are considered in this example.
In the finite element solution, the spherical shell is modeled by elements with trilinear
shape functions and a Neo-Hookean material model is used (see Figure 2). Due to the
lack of experimental and material data the material and electromechanical parameters
are occasionally defined and are shown on the right-hand side in Figure 2. Symmetry is
considered in the numerical solution by modeling only one eighth of the sphere. The shell
is discretized with 144 elements in tangential direction and, for a convergency study, with
2-10 elements in radial direction. Symmetry boundary conditions are utilized, in order
to achieve a the shell fixed in both tangential directions. Two cases will be studied. In
the first case (Case I) the shell is fixed at the boundaries in radial direction. The second
case (Case II) investigates a fixed inner surface and a moveable outer surface in radial
direction. In both cases, the shell is loaded by a radial electrical field of 10V/mm. The
inner surface is grounded, on the outer surface a voltage of 10V is applied. Note that this
problem is a one-dimensional problem and other segmentations are possible. In reference
to the spherically symmetrical loading, the electric potential is only a function of radius R.
Furthermore, the offset diagonals of the stress tensor are zero and the principal stresses
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are equal, because of the mentioned loading and the use of spherical coordinates. The
spherical coordinates in the undeformed configuration are (R,Θ,Φ), and (r, θ, ϕ) during
the deformation. The reference geometry is defined by

Ri ≤ R ≤ Ro, 0 ≤ Θ ≤ π, 0 ≤ Φ ≤ 2π

whereas Ri and Ro are the inner and outer radii of the shell, respectively. The current

geometry

inner radius Ri = 10mm
outer radius Ro = 20mm
electrical parameters

inner potential φ(r(Ri)) = 0V
outer potential φ(r(Ro)) = 10V
material parameters

mechanical

shear modulus μ = 5Nmm−2

bulk modulus κ = 16Nmm−2

electrical

parameter c1 = 10Fmm−1

parameter c2 = 6Fmm−1

Figure 2: Geometry and finite element mesh of thick-walled spherical shell

geometry is described by

ri ≤ r ≤ ro, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π.

With the fundamental equations Div( �D) = 0 and Div(P̂ ) = 0 the system of equations
follows

∂P̂RR

∂R
+

2
R

(P̂RR − P̂ΘΘ) = 0

∂DR

∂R
+

2
R
DR = 0. (46)

See [7] for an arbitrary vector and tensor in spherical coordinates. DR is the only non-zero
component of the electric displacement vector. The component of the stress tensor P̂RR

is the principal stress in radial direction. The components P̂ΘΘ and P̂ΦΦ are the principal
stress components in tangential direction, with P̂ΘΘ = P̂ΦΦ. The aforementioned system
of differential equations and the boundary conditions r(Ri), r(Ro), φ(r(Ri)) and φ(r(Ro))
complete the boundary value problem. Take into a account, that the free energy in a
vacuum and higher order effects are neglected Espace = 0 and W,6 = 0, respectively. From
this it follows that Ω = W and �P = �D. The first Piola-Kirchhoff type stress tensor
P̂ = F T and the electric displacement �D can be derived:

P̂ = 2F
[
J−2/3

P : W̃,1I + W̃,2

(
Ĩ1I − C̃

)
+ 1/2JUvol, JC−1 +W,5

�E ⊗ �E
]

�D = −2(W,4
�E +W,5C �E). (47)
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Through the choice of a Neo-Hookean material model for the derivations of the free energy
function W holds

W̃,1 = μ/2, W̃,2 = 0, Uvol = κ/4 (J2 − 1 − ln[J2]), W,4 = c1, W,5 = c2. (48)

The deformation gradient and related quantities can be expressed in spherical coordinates
as follows

F =

⎛
⎝r′ 0

0 r/R 0
0 0 r/R

⎞
⎠ , C = b =

⎛
⎝r′2 0

0 (r/R)2 0
0 0 (r/R)2

⎞
⎠ , J =

( r
R

)2
r′, (49)

where r′ = ∂r(R)
∂R . Now it is possible to obtain all non-zero components of the stress tensor

and the electric displacement through Eqs. (46)1,2, (47) and (48).

P̂RR =
2
3
μ

[
r′1/3

(
r(R)
R

)−4/3

− r′−5/3

(
r(R)
R

)2/3
]

+
κ

2

[
r′

(
r(R)
R

)4

− r′−1

]
+ 2c2r′E2

r

P̂ΘΘ =
1
3
μ

[
r′−2/3

(
r(R)
R

)−1/3

− r′4/3

(
r(R)
R

)−7/3
]

+
κ

2

[
r′2

(
r(R)
R

)3

−
(
r(R)
R

)−1
]

DR = −2c1Er − 2c2r′2Er (50)

The nodal displacements in radial direction are depicted in Figure 3 for the different
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Figure 3: Displacement vs. radius for Case I (left) and Case II (right)

boundary conditions. As a result, further calculations are performed using by five elements
over the thickness.

In Figure 4, the finite element results are compared with the above-mentioned analyt-
ical approach. The solution for Eqs. (46)1,2 with the two different boundary conditions
(Case I and Case II) was found by Maple

TM2(Waterloo, ON, Canada). In the left diagram
in Figure 4, the radius in the current configuration r(R) vs. the electric potential φ is
plotted. In the right, the radius in the current configuration r(R) is depicted against the
radius in the reference configuration. The dashed curve implies in each case the initial
situation. The solid curves describe the results found by the analytical method and the
dotted curves elucidate the finite element solutions of the proposed model. A horizontal
line from the dashdotted curve to one of the solid or dotted curves can be interpreted as
the difference between reference and current configuration. In comparison to the analytical

2Maple is a trademark of Waterloo Maple Inc.
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Figure 4: Current radius versus electric potential (left) and the current radius versus
initial radius (right) of the spherical shell

approach the results matches for both boundary conditions. The last picture (see Figure
5) in this subsection shows the convergence behavior of the ten load steps for both cases.
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Figure 5: Residuum versus load step for five elements over thickness for Case I and Case
II of the spherical shell

4.2 Plate under electrical loading

In this example a plate with a centered hole is analyzed under the influence of an elec-
tric potential. A similar example has been presented in [23] in the context of nonlinear
electroelasticity. Only one eighth of the plate is discretized and symmetry boundary con-
ditions are utilized (see Figure 6). A potential of φ = 220V is applied at the top end of the
plate. The bottom end is grounded. Therefore an electric field of 5.5V/mm is brought up
and for reasons of symmetry the plate is loaded with φ = 110V . Along with the material
parameters, the loading conditions are listed on the right-hand side of Figure 6. In this ex-
ample the Neo-Hookean material model (p = 1, cf Eq. (31)1) and one viscoelastic process
with m = 1, cf Eq. (31)2 is used. The electrical loading is applied from 0V to 110V in ten
time steps to Δt = 0.01 s (s. right axis of ordinates in Figure 8). After applying this linear
increasing electrical load, the electric potential is held fixed until t = 10 s at time steps of
Δt = 0.1 s. The convergence behavior is studied with four different meshes with 8, 64, 512,
and 1600 elements. This corresponds to 81, 435, 2727, and 7689 degrees of freedom in the
FE-analysis, respectively. The results are presented on the left-hand side of Figure 7. As a
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geometry

height h = 40 mm

width w = 40 mm

diameter d = 10 mm

thickness t = 5 mm

loading conditions

elec. pot. at x = 20 mm φ = 220 V

elec. pot. at x = −20 mm φ = 0 V

material parameters

mechanical

in Eqs. 341,2 n = 1

in Eq. 342 m = 1

elastic shear modulus μ1e = 5 N/mm−2

bulk modulus κ = 6.67 N/mm−2

viscous shear modulus 1μ1v = 5 N/mm−2

viscosity 1ηiso = 1, 10 or

100 Ns mm−2

additional parameter α1e = α1v = 2

electrical

parameter c1 = 0.01 Fmm−1

parameter c2 = 0.06 Fmm−1

Figure 6: Geometry, finite element mesh (left); loading conditions and material param-
eters (right) of the plate

consequence all further calculations are done by a plate modeled with 512 elements. As an
example the order of convergence for the first 15 load steps is depicted on the right-hand
side of Figure 7. The results of the finite element analysis are presented in Figure 8 for
different values of the viscosity ηiso ∈ (1, 10, 100)Nsmm−2 . Here, the displacement in x-
direction in millimeter [mm], measured at point P at (x, y, z) = (20mm, 0mm,−2.5mm)
(see Figure 6), vs. the time in seconds [s] is depicted. Figure 8 clearly illustrates the vis-
coelastic effects of the formulation. This implies that electric fields leads to creep effects
in the material. The first picture in Figure 9 shows the distribution of the electric poten-
tial and the vectors illustrate the electric displacement. The remaining pictures in Figure
9 illustrate the distribution of the displacements. The stresses caused by the electrical
loading are exemplified in Figur 10. Results in Figure 9 and 10 are calculated for the case
1ηiso = 1Nsmm−2 and after the end of loading (t = 10 s) based on a model with 512
elements.
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φ �ux

�uz �uy

Figure 9: Electric potential φ in [V ], the electric displacement �d (vectors) (top left) and
the displacements in x, y, z-direction in [mm] in the deformed configuration for ηiso =
1Nsmm−2
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τxx
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τzz

τxy

τxz

τyz

Figure 10: In each case ηiso = 1Nsmm−2 in the deformed configuration: counterclock-
wise from top left: τxx, τyy, τzz, τyz , τxz, and τxy in [N/mm2].
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4.3 Tubular actuator

In this example a idealized tubular actuator made of electroactive polymers is investigated.
The specimen is based on an actuator from Danfoss Polypower A/S, Denmark, which is
already commercially available. Progress in research and development in the field of active
polymers has enabled the fabrication of this new active material, which demonstrates the
future potential and versatility of this technology. Tubular actuators are also referred to
as rolled, coiled or wrapped actuators. In this example the loading conditions are variable,
whereas in the previous example the retardation time τ or the boundary conditions have
been changed. The left-hand side of Figure 11 shows the setup for this type of actuator.

Figure 11: Unclad InLastor R©from Danfoss Polypower A/S, Denmark (left) and
schematic structure of a four-layer composite EAP laminate (right).

This involves winding dielectric polymer film (silicon elastomer) with a thickness of 80μm
around a mandrel. One of the two surfaces of this elastomer film is corrugated and the
electrode is applied onto it. The compliant electrode consists of the noble metal silver
(Ag) with a thickness of 100nm. On the right-hand side of Figure 11 the active film
has dark shading and the electrode has lighter shading. In this picture, a back-to-back
configuration of the layers, is depicted. Two identical back-to-back laminates (Layer I
and II) are laminated together to form a four-layer composite assembly. Figures 12
and 13 show the approximated geometry and structure of the actuator, which consists of
coiled active and passive layers. The active layer has dark shading. The separating layer
(passive) inbetween is highlighted in grey. In the finite element analysis 240 elements
are used for the cross section. In axial direction 4, 8 or 16 elements are used for a
convergence study. The results are shown in Figure 14 and as a consequence 16 elements
in axial direction are used for further calculations. The active elements are based on the
presented model. Nonconducting geometrical nonlinear hexahedron elements with linear
shape-functions are used for the passive layer. The specimen is loaded with a sinusoidal
electrical potential with different frequencies. The amplitude of the loading is 2500V and
the variable frequencies are 0.1 Hz, 1Hz and 10 Hz. This Voltage is applied on the inner
surface of the active layer. The outer surface of the active layer is grounded. The material
parameters are chosen from preceding example. A Neo-Hookean material model and one
viscoelastic process is used, (p = 1) and (m = 1) in Eqs. (35)1,2), respectively. The
material parameters μ and κ originate from a product data sheet of the aforementioned
company. For the following diagrams, the displacement is measured at the top end of the
actuator at point P (x= 1mm, y= 0mm, z= 8mm) (see Figure 12 or 13). All remaining
parameters which were used for the simulation are defined in Figure 12. The specimen is
clamped at the bottom end (z= 0mm). At the top end (z=8mm), only axial displacements
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geometry

length l = 8mm
starting radius rs = 1mm
ending radius re = 4mm
loading conditions

elec. pot. inner surface φ = 2500V
elec. pot. outer surface φ = 0V
passiv layer

layer thickness t = 0.3mm
materials parameters

shear modulus μ = 0.37N/mm−2

bulk modulus κ = 18.33N/mm−2

active layer

layer thickness t = 0.5mm
materials parameters

in Eqs. (31)1,2 n = 1
in Eq. (31)2 k = 1

elastic shear modulus μ1e = 0.37N/mm−2

bulk modulus κ = 18.33N/mm−2

viscous shear modulus 1μ1v = 0.37Nmm−2

viscosity 1ηiso = 10Nsmm−2

parameter α α1e = 1α1v = 2
material-electrical parameters

parameter c1 = 2.7 · 10−8 Fmm−1

parameter c2 = 2.7 · 10−8 Fmm−1

Figure 12: Geometry, finite element mesh, loading conditions and material parameters
of the actuator

are possible. At this end, nodes are linked together, to have identical displacements. On
the right-hand side of Figure 14 the displacement uz is plotted for 90 s < t < 100 s. It
shows the obvious time-dependent reaction of the material. The displacement uz vs. time
is depicted in Figure 15. It points out the influence of the viscosity through the time
dependent retardation of the displacement. The dissipative effects can be seen in the
hysteresis curves from Figure 15. These diagrams show the electric potential φ over the
displacement uz. It is evident, that the dissipative effect is greater for low frequencies than
for high frequencies. A further point, which can be seen in Figure 15, is the quadratic
effect in the formulation. Due to the sinusoidal electric loading, the direction of the electric
field switches, but due to electrostriction the displacement doesn’t change the direction.
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Figure 13: The nonlinear visco-electroelastic elements have dark shading and the electric
loaded surface (active layer) has light shading. The nonconducting elements (passive layer)
between the active layers are not drawn
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Figure 14: Right: displacement uz for variable number of axial elements by frequency of
f1 = 0.1Hz. Left: displacement uz for the first 10 s loaded by 2500V . For both graphs
f1 = 0.1Hz and 16 axial elements are used
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Figure 15: Displacement uz vs. time for different frequencies f1 = 0.1Hz, f2 = 1Hz
and f3 = 10Hz
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4.4 Circular dielectric electro active polymer actuator

Finally, a circular actuator is considered and its response to pre-strain and electrical
loading is analyzed. It consists of the circular elastomer and a solid frame. The electrodes
are attached on the bottom side and top side of the circular slab-like dielectric elastomer,
see Figure 16. The Dielectric electroactive polymer (DEAP) has a outer diameter of do =
22mm and an inner of di = 12.5mm. The elastomer and the electrodes are approximately
hd = 40μm and he = 10μm thick, respectively. The specimen reacts to an electric field
with an out of plane motion of the center plate, compare both pictures in Figure 16. For
a more detailed description, we refer to the experimental papers [33, 34]. For the finite

Figure 16: Circular actuator in the initial and deformed configuration.

element simulation only one quarter of the elastomer is modeled. Note that, due to the
lack of material parameters for the electrode material, we do not consider the electrodes
in the simulation. The outer edge of the elastomer is rigidly adhered to the solid frame
and the inner edge is rigidly adhered to the circular slab. The displacement degrees of
freedom on the edges in radial direction are constrained. However, the inner edge is
allowed to move in z-direction. Ten Elements in radial direction and twenty elements
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material parameters

dielectrica

in Eqs. (31)1,2 n = 1
in Eq. (31)2 k = 1

shear modulus and μ1e = 2.03e−2Nmm−2, α1e = 2.71

parameter α μ2e = 1.47e−5Nmm−2, α2e = 15.27

μ3e = −0.23Nmm−2 , α3e = −8.79
μ1v = 0.75 · μ1e , α1v = α1e

μ2v = 0.75 · μ2e , α2v = α2e

μ3v = 0.75 · μ3e , α3v = α3e

Figure 17: Finite element mesh and material parameters of the actuator. Not drawn to
scale.

in circumferential direction are used for the finite element mesh. In thickness direction
the elastomer is discretised by four elements. The convergency of the results is checked
by h-refinement and with elements of higher polynomial order. To identify the material
parameters a uniaxial pull test is analyzed, see Figure 18 on the left hand side. On the
right hand side of Figure 18, the actuator described previously is considered. Both curves
are fitted to the experimental results. In the load-deflection curve the displacement in
z-direction of the inner edge is depicted versus the load, which is uniformly applied in
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z-direction. The material parameters are qualitatively fitted to these curves and depicted
in Figure 18. In this way the material parameters found are given on the right-hand side
of Figure 17 for the used Ogden-material model. The bulk-modulus is defined by κ =
1000μe with μe = 1/2

∑3
p=1 αpe μpe. Because of the lack of experimental data we assumed

Figure 18: Uniaxial pull test of the dielectric elastomer (left) and of the considered
actuator without electrodes (right) to indicate the material parameters. Experimental
results are taken from [35] and [33], respectively.

the electromechanical parameters c1 = 1 · 10−11 Fmm−1 and c2 = 5 · 10−11 Fmm−1.
Unfortunately, the loading rate is also unknown, thus we assume a viscosity of 1ηiso =
10Nsmm−2. In the next step, the considered actuator is investigated for four different
pre-strains, see also [34]. X First the displacement of the inner edge is prescribed with

Figure 19: Loading conditions with 1–3 mm pre-strain with following electric loading
(left) and results for the different pre-strains (right). Experimental results are taken from
[34].

1mm to 3mm in steps of 0.5mm. Afterwards the displacement is frozen and a support in
vertical direction is added. The reaction force of the support is measured, which is caused
by an applied triangular-shaped electrical potential with a frequency of 1 Hz. The loading
conditions are shown on the left hand side and the results on the opposite side in Figure
19. It shows also that an increase of the pre-strain results in an increase of the actuating
power during an electrical loading, which qualitatively coincides with the experimental
data. Furthermore the simulation shows an enlargement of the hysteresis by increasing
electric field and pre-strain. This fact does not correspond to the experimental data, but
by using a better choice of the viscosity parameters an improved approximation to the
experimental curves should be possible.
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5 Conclusion

Due to the growing interest of small but powerful electromechanical actuators, one of the
aims should be reliable numerical models.
In this paper a nonlinear visco-electroelastic model for dielectric elastomers is presented.
This model is based on the laws of electricity and elasticity and incorporates time depen-
dent effects, large strains and electromechanical coupling. The deformation gradient is
multiplicatively decomposed into an elastic and a viscous part. The model is embedded in
a thermodynamic consistent framework, based on the definition of a free energy function
for the elastic, electric and viscous parts. The irreversible viscous part serves as internal
variable describing the dissipation of the material. A consistent finite element approxi-
mation is formulated employing displacements and the electric potential as independent
variables. The presented examples demonstrate the efficiency of the developed formulation
within various applications.
To operate with moderate electric fields, thin layers are a possible solution and are state
of the art. Hence the usage of shell elements would be advantageous, to reduce numerical
problems like locking effects. A further important effect is to improve the theory about
anisotropic effects within the material. A strain induced effect on the change of material
properties would be a good approximation for the polymeric behavior.
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