Jahresbericht 2016

W. Wagner

Mitteilung 1(2017)
Jahresbericht 2016

W. Wagner

Mitteilung 1(2017)
Vorwort

Karlsruhe, im Dezember 2016

Werner Wagner

Copyright

- Ohne Genehmigung des Autors ist es nicht gestattet, dieses Heft ganz oder teilweise zu kopieren oder zu scannen, in PCs oder auf CDs zu speichern oder in PCs/Computern zu verändern.

- © Prof. Dr.-Ing. habil. W. Wagner
 Institut für Baustatik
 Karlsruher Institut für Technologie
 Kaiserstr. 12
 76131 Karlsruhe
 Telefon: (0721) 608–42280
 Telefax: (0721) 608–46015
 E–mail: info@ibs.kit.edu
 Internet: http://www.ibs.kit.edu
Inhaltsverzeichnis

1 Organisation und Personal 6
 1.1 Gliederung des Instituts .. 6
 1.2 Mitarbeiter des Instituts .. 6
 1.3 Gastwissenschaftler ... 6
 1.4 Freie Mitarbeiter .. 7
 1.5 Studentische Hilfskräfte ... 7
 1.6 Ehemalige wiss. Mitarbeiter 7
 1.7 Adresse .. 9

2 Lehre und Studium 10
 2.1 B.Sc.-Studiengang-Bauingenieurwesen 10
 2.1.1 Vorbemerkungen ... 10
 2.1.2 Liste der Lehrveranstaltungen 10
 2.1.3 Prüfungsmodalitäten 10
 2.2 M.Sc.-Studiengänge-Bauingenieurwesen 11
 2.2.1 Liste der Lehrveranstaltungen 11
 2.2.2 Prüfungsmodalitäten 11
 2.3 Prüfungen .. 12
 2.4 Liste der Manuskripte .. 12
 2.5 Lehr-Software .. 13
 2.6 Betrieb CIP-Pool, Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften 13
 2.7 Bachelor- und Masterarbeiten 14
 2.8 Ehrungen .. 15
 2.9 Stipendien ... 15
 2.10 Auslandskontakte über das Erasmus-Programm 15

3 Forschung 16
 3.1 Forschungsarbeiten ... 16
 3.2 Veröffentlichungen ... 17
 3.3 Vorträge .. 19
 3.4 Vorträge im Seminar für Baustatik 21
 3.5 Institutsmitteilungen .. 22
 3.6 Gutachtertätigkeiten .. 23
4 Aktivitäten in Organisation von Lehre und Forschung
 4.1 Mitwirkung in Universitätsgremien 24
 4.2 Mitgliedschaft und Aktivitäten in Organisationen 24
 4.3 Mitgliedschaften in wissenschaftlichen Vereinigungen 25

5 Kontakte
 5.1 Auslandsbeziehungen .. 26
1 Organisation und Personal

1.1 Gliederung des Instituts

Institutsleitung: o.Prof. Dr.-Ing. habil. Werner Wagner
Abteilung Baustatik und Numerische Methoden
Abteilung Versuchswesen und Meßtechnik
CIP–Pool der Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

1.2 Mitarbeiter des Instituts

• Hochschullehrer:
 Prof. Dr.-Ing. habil. Wagner, Werner

• entpflichtete Professoren:
 Prof. Dr.-Ing. Vogel, Udo, verstorben am 14.02.2015

• Wissenschaftliche Assistenten/Mitarbeiter
 Dr.-Ing. Münch, Ingo
 Dipl.-Ing. Fina, Marc
 M.Sc. Jarzębski, Pawel
 Dipl.-Ing. Herwig, Tillmann
 Dipl.-Ing. Keller, Alexander
 Dipl.-Ing. Köpple, Max
 Dipl.-Ing. Krauß, Matthias
 Dipl.-Ing. Läufer, Jonas
 M.Sc. Wöhler, Franziska

• Verwaltungs- und Technische Angestellte
 Dipl.-Ing. Klenk, Gerhard
 Barfuß, Petra
 Kölner, Michelle
 Ruf, Andreas

1.3 Gastwissenschaftler

Prof. Dr.-Ing. habil. Lapusta, Yuri
1.4 Freie Mitarbeiter

Dr.-Ing. Harich, Jens

1.5 Studentische Hilfskräfte

Becker, Verena
Bolloni, Max
Borst, Jan
Gierden, Christian
Lampert, Lorena
Moik, Tabea
Müller, Andreas
Panther, Lukas
Straub, Maximiliane
Strübel, Stephan
Wahn, Alexandra
Watrin, Jan
Weber, Patrick

1.6 Ehemalige wiss. Mitarbeiter

Balzani, Claudio, Dr.-Ing., Institut für Windenergiesysteme, Leibniz Universität Hannover, email: claudio.balzani.at.iwes.uni-hannover.de

Baumann, Markus, Prof. Dr.-Ing., Fachbereich Bauingenieurwesen Hochschule Karlsruhe, Technik und Wirtschaft email: Markus.Baumann.at.hs-karlsruhe.de

Bletzinger, Kai-Uwe, Prof. Dr.-Ing., Lehrstuhl für Statik TU München, email: kub.at.bv.tum.de

Brugger, Anna, Dipl.-Ing., SLP Ingenieurbüro für Tragwerksplanung, Weinbrennerstr. 18, 76135 Karlsruhe email: Anna.Brugger.at.SLP-Tragwerksplanung.de

Büschel, Alexander, Dr.-Ing., Structural Dynamics WRD GmbH, Dreekamp 5, D-26605 Aurich email: alexander.bueschel.at.enercon.de
Butz, Alexander, Dr.-Ing., Kompetenzzentrum für Bauteilsimulation SimBAU Fraunhofer-Institut für Werkstoffmechanik IWM Woehlerstr. 11, 79108 Freiburg
email: alexander.butz.at.iwm.fraunhofer.de

Gruttmann, Friedrich, Prof. Dr.-Ing. habil. Fachgebiet Festkörpermechanik, TU Darmstadt,
email: gruttmann.mechanik.tu-darmstadt.de

Gschwind (geb. Kugler), Joachim, Prof. Dr.-Ing., FB Bauingenieurwesen FH Regensburg,
email: joachim.gschwind.at.fh-regensburg.de

Harich, Jens, Dr.-Ing., Ministerium für Verkehr und Infrastruktur, Ref.24 - Straßenbau östlicher Landesteil -, Hauptstätter Str. 67, 70178 Stuttgart,
email: Jens.Harich.at.mvi.bwl.de

Heil, Wolfgang, Prof. Dr.-Ing., In der Halde 30, 67480 Edenkoben,
email: w.heil.at.kabelmail.de

Höß, Petra, Dr.-Ing., Prüfingenieurin für Bautechnik VPI, Basler Straße 115, 79115 Freiburg,
email: p.hoess.at.mh-bauingenieure.de

Klinkel, Sven, Prof. Dr.-Ing. habil., Lehrstuhl für Baustatik und Baudynamik,
RWTH Aachen,
email: klinkel@lbb.rwth-aachen.de

Knebel, Klaus, Dr.-Ing., Gartner Steel and Glass GmbH, Würzburg,
email: k.knebel@gartnersteel.com

Lacher, Stefan, Dr.-Ing., Mack Rides GmbH & Co.KG, Mauermannstr. 4, 79183 Waldkirch,
email: stefan.lacher@mack-rides.com

Lapusta, Yuri, Prof. Dr., IFMA-French Institute of Advanced Mechanics, Clermont-Ferrand,
email: lapusta@ifma.fr

Lauterbach, Stefan, Dr.-Ing., Sigma Karlsruhe GmbH, Daimlerstr. 21, 76316 Malsch,
email: Lauterbach@sigma-ka.de

Legner, Dieter, Dr.-Ing., Wilhelm Layher GmbH & Co. KG, Ochsenbacher Str. 56, 74363 Güglingen-Eibensbach,
email: dieter.legner@layher.com

Linnemann, Konrad, Dr.-Ing., BAM Bundesanstalt für Materialforschung und -prüfung, Fachgruppe III.3 'Sicherheit von Transportbehältern’, Unter den Eichen 44-46, 12200 Berlin,
email: konrad.linnemann@bam.de

Sansour, Carlo, Prof. Dr.-Ing. habil., School of Civil Engineering, Univ. of Nottingham, UK,
e-mail: carlo.sansour@nottingham.ac.uk

Sauer, Roland, Dr.-Ing., RIB Bausoftware, Stuttgart,
e-mail: Roland.Sauer@rib-software.com

Schulz, Katrin, Dr.-Ing., Institut für Zuverlässigkeit von Bauteilen und Systemen, Karlsruher Institut für Technologie (KIT),
email: katrin.schulz@kit.edu
1.7 Adresse

Institut für Baustatik
Karlsruher Institut für Technologie
Kaiserstr. 12
76131 Karlsruhe

Tel.: +49(0)721–608–42280
Fax: +49(0)721–608–46015
E-mail: info.at.ibs.kit.edu
URL: http://www.ibs.kit.edu
2 Lehre und Studium

2.1 B.Sc.-Studiengang-Bauingenieurwesen

2.1.1 Vorbemerkungen

Das Studium der Baustatik ist zu Beginn des Fachstudiums angelegt. Eine vollständige Darstellung aller Veranstaltungen sowie deren sinnvolle Reihenfolge ist der nachfolgenden Übersicht zu entnehmen.

2.1.2 Liste der Lehrveranstaltungen

Wintersemester: (2015/2016)

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baustatik 2</td>
<td>Wagner/Fina</td>
</tr>
<tr>
<td>Seminar für Baustatik</td>
<td>Wagner</td>
</tr>
</tbody>
</table>

Sommersemester: (2016)

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baustatik 1</td>
<td>Wagner/Läufer</td>
</tr>
<tr>
<td>Seminar für Baustatik</td>
<td>Wagner</td>
</tr>
</tbody>
</table>

Wintersemester: (2016/2017)

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baustatik 2</td>
<td>Wagner/Läufer</td>
</tr>
<tr>
<td>Seminar für Baustatik</td>
<td>Wagner</td>
</tr>
</tbody>
</table>

2.1.3 Prüfungsmodalitäten

Grundfachprüfungen

<table>
<thead>
<tr>
<th>Fach</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baustatik 1</td>
<td>schriftliche Prüfung, 120 Min.</td>
</tr>
<tr>
<td>Baustatik 2</td>
<td>schriftliche Prüfung, 120 Min.</td>
</tr>
</tbody>
</table>
2.2 M.Sc.-Studiengänge-Bauingenieurwesen

M.Sc.-Studiengang Bauingenieurwesen
M.Sc.-Studiengang Funktionaler und Konstruktiver Ingenieurbau – Engineering Structures

Die Baustatik-Module sowie deren sinnvolle Reihenfolge ist der Übersicht beim B.Sc.-Studiengang zu entnehmen.

2.2.1 Liste der Lehrveranstaltungen

Wintersemester: (2015/2016)

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flächentragwerke</td>
<td>Wagner/Keller</td>
</tr>
<tr>
<td>Nichtl. Modellierung von Stabtragwerken</td>
<td>Münch/Keller</td>
</tr>
<tr>
<td>Nichtl. Modellierung von Flächentragwerken</td>
<td>Wagner/Läufer</td>
</tr>
<tr>
<td>Numerische Methoden in der Baustatik I+II</td>
<td>Münch</td>
</tr>
<tr>
<td>Seminar für Baustatik</td>
<td>Wagner</td>
</tr>
</tbody>
</table>

Sommersemester: (2016)

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schalentragwerke</td>
<td>Münch</td>
</tr>
<tr>
<td>Stabilität der Tragwerke</td>
<td>Münch/Fina</td>
</tr>
<tr>
<td>Computersgestützte Tragwerkstruktur</td>
<td>Wagner/Keller</td>
</tr>
<tr>
<td>FE-Anwendung in der Baupraxis</td>
<td>Wagner/Keller</td>
</tr>
<tr>
<td>Seminar für Baustatik</td>
<td>Wagner</td>
</tr>
</tbody>
</table>

Wintersemester: (2016/2017)

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flächentragwerke</td>
<td>Wagner/Fina</td>
</tr>
<tr>
<td>Nichtl. Modellierung von Stabtragwerken</td>
<td>Münch/Fina</td>
</tr>
<tr>
<td>Nichtl. Modellierung von Flächentragwerken</td>
<td>Wagner/Keller</td>
</tr>
<tr>
<td>Numerische Methoden in der Baustatik I+II</td>
<td>Münch</td>
</tr>
<tr>
<td>Seminar für Baustatik</td>
<td>Wagner</td>
</tr>
</tbody>
</table>

2.2.2 Prüfungsmodalitäten

<table>
<thead>
<tr>
<th>Fach</th>
<th>Prüfungsform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flächentragwerke</td>
<td>schriftliche Prüfung, 60 Min., Studienarbeit</td>
</tr>
<tr>
<td>Nichtlineare Modellierung von Stabtragwerken</td>
<td>schriftliche Prüfung, 90 Min.</td>
</tr>
<tr>
<td>Computersgestützte Tragwerkstruktur</td>
<td>mündliche Prüfung, 30 Min., Studienarbeit</td>
</tr>
<tr>
<td>Schalentragwerke</td>
<td>mündliche Prüfung, 30 Min., Studienarbeit</td>
</tr>
<tr>
<td>Stabilität der Tragwerke</td>
<td>mündliche Prüfung, 30 Min.</td>
</tr>
<tr>
<td>Nichtl. Modellierung von Flächentragwerken</td>
<td>mündliche Prüfung, 30 Min.</td>
</tr>
<tr>
<td>Numerische Methoden in der Baustatik I+II</td>
<td>mündliche Prüfung, 30 Min.</td>
</tr>
<tr>
<td>FE-Anwendung in der Baupraxis</td>
<td>Seminarvortrag, 30 Min.</td>
</tr>
</tbody>
</table>
2.3 Prüfungen

<table>
<thead>
<tr>
<th>Fach</th>
<th>Teilnehmer</th>
<th>bestanden</th>
<th>nicht bestanden</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 2015/16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baustatik 1</td>
<td>37</td>
<td>62.2 %</td>
<td>37.8 %</td>
</tr>
<tr>
<td>Baustatik 2</td>
<td>159</td>
<td>78.6 %</td>
<td>21.4 %</td>
</tr>
<tr>
<td>Flächentragwerke</td>
<td>103</td>
<td>91.3 %</td>
<td>8.7 %</td>
</tr>
<tr>
<td>Nichtlineare Modellierung von Stabtragwerken</td>
<td>47</td>
<td>91.5 %</td>
<td>8.5 %</td>
</tr>
<tr>
<td>Computergestützte Tragwerksmodellierung</td>
<td>10</td>
<td>100.0 %</td>
<td>0.0 %</td>
</tr>
<tr>
<td>Stabilität der Tragwerke</td>
<td>3</td>
<td>100.0 %</td>
<td>0.0 %</td>
</tr>
<tr>
<td>Schalentragwerke</td>
<td>3</td>
<td>100.0 %</td>
<td>0.0 %</td>
</tr>
<tr>
<td>Numerische Methoden der Baustatik I,II</td>
<td>5</td>
<td>100.0 %</td>
<td>0.0 %</td>
</tr>
<tr>
<td>FE-Anwendung in der Baupraxis</td>
<td>22</td>
<td>100.0 %</td>
<td>0.0 %</td>
</tr>
<tr>
<td>Nichtlineare Modellierung von Flächentragwerken</td>
<td>2</td>
<td>100.0 %</td>
<td>0.0 %</td>
</tr>
<tr>
<td>SS 2016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baustatik 1</td>
<td>161</td>
<td>46.0 %</td>
<td>54.0 %</td>
</tr>
<tr>
<td>Baustatik 2</td>
<td>36</td>
<td>86.1 %</td>
<td>13.9 %</td>
</tr>
<tr>
<td>Flächentragwerke</td>
<td>10</td>
<td>80.0 %</td>
<td>20.0 %</td>
</tr>
<tr>
<td>Nichtlineare Modellierung von Stabtragwerken</td>
<td>2</td>
<td>100.0 %</td>
<td>0.0 %</td>
</tr>
<tr>
<td>Computergestützte Tragwerksmodellierung</td>
<td>15</td>
<td>100.0 %</td>
<td>0.0 %</td>
</tr>
<tr>
<td>Stabilität der Tragwerke</td>
<td>7</td>
<td>100.0 %</td>
<td>0.0 %</td>
</tr>
<tr>
<td>Schalentragwerke</td>
<td>7</td>
<td>100.0 %</td>
<td>0.0 %</td>
</tr>
<tr>
<td>Numerische Methoden der Baustatik I,II</td>
<td>2</td>
<td>100.0 %</td>
<td>0.0 %</td>
</tr>
<tr>
<td>FE-Anwendung in der Baupraxis</td>
<td>36</td>
<td>100.0 %</td>
<td>0.0 %</td>
</tr>
<tr>
<td>Nichtlineare Modellierung von Flächentragwerken</td>
<td>5</td>
<td>100.0 %</td>
<td>0.0 %</td>
</tr>
</tbody>
</table>

2.4 Liste der Manuskripte

Baustatik 1
Baustatik 2
Computergestützte Tragwerksmodellierung
Nichtlineare Modellierung von Stabtragwerken
Flächentragwerke
Stabilität der Tragwerke
Schalentragwerke
Nichtlineare Modellierung von Flächentragwerken

Prüfungsaufgaben Baustatik Bachelor-Studium
Prüfungsaufgaben Baustatik Master-Studium
Programm FEAP (Finite Element Analysis Program)
2.5 Lehr-Software

STAB2D
FEAP
DLUBAL: RSTAB, RFEM
RIB: RIBTEC
InfoGraph
D.I.E.
sowie diverse im CIP-Pool installierte Bau-Software

2.6 Betrieb CIP-Pool, Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften

Das Institut für Baustatik betreibt für die Fakultät für Bauingenieur-, Geo- und Umweltwissenschaften den studentischen Rechnerpool mit nachfolgender Ausstattung.

- **Hardware Raum 401:**
 35 Arbeitsplätze
 Prozessor: Intel CORE CPU 3.2 GHz * Arbeitsspeicher: 4 GB RAM * DVD-ROM-Laufwerk
 * Monitor: LCD 23”
 1 SW-Drucker
 Druckabrechnung erfolgt über das Rechenzentrum
 1 Farb-Plotter DIN-A1
 1 Beamer

- **Hardware Raum 402:**
 25 Arbeitsplätze, sowie 1 Anschluß für Laptop
 Prozessor: Intel CORE CPU 3,2 GHz * Arbeitsspeicher: 4 GB RAM * DVD-ROM-Laufwerk
 * Monitor: LCD 19”
 1 SW-Drucker
 Druckabrechnung erfolgt über das Rechenzentrum
 1 Beamer

- **Software**
2.7 Bachelor- und Masterarbeiten

• Jeremy Geiger
 Modellierung von 2D-Vouten-Elementen: Theorie und numerische Modelle

• Alexandra Wahn
 Theorie 2. Ordnung: Theorie und Umsetzung im Rahmen des Verschiebungsgrößenverfahren

• Lukas Panther
 Stabilitätsuntersuchungen von Plattenstrukturen aus Faserverbundmaterial mit zufallsverteilten materiellen Imperfektionen

• Sergio Martin Román
 The double arch bridge: A finite element analysis thesis and engineering design Project

• Bekir Belek
 Momentenspannung in höherer Elastizitätstheorie – Variationsformulierung, Spannungsanalyse und analytische Beispiele

• Mareike von Arnim
 Standfestigkeit von Gebäuden in Hochwassergebieten – Berechnungsmethoden und statische Nachweise

• Jan Zoller
 Entwicklung eines Mehrskalenmodells für nichtlineare Verbundglasstrukturen

• Verena Becker
 Eine Gradientenerweiterung für ein isotropes Schädigungsmodell zur Vermeidung der Netzaabhängigkeit bei 3D-FE-Modellen, nominiert für Dynamore-Preis 2016

• Christian Gierden
 Mechanische Formoptimierung mittels Phasenfeldmethode, nominiert für Dynamore-Preis 2016

• Annika Brosi
 Optimierung von Stabtragwerken mit Evolutionsstrategien

• Stephanie Hambsch
 Numerische Simulation von endlosfaserverstärkten Kunststoffbauteilen unter Biegebeanspruchung mit Analyse der Schädigungs- und Versagensmechanismen nach dem Materialmodell von Camanho
2.8 Ehrungen

• Nominierung und Auszeichnung beim Bilfinger SE Preis 2016:
 cand.-ing. Patrick Weber
 Numerische Untersuchung der Systemantwort von Tragwerken mit zufallsverteilten Materialeigenschaften unter Verwendung der Monte-Carlo-Simulation

• Nominierung für Dynamore-Preis 2016
 MSc. Verena Becker
 Eine Gradientenerweiterung für ein isotropes Schädigungsmodell zur Vermeidung der Netzabhängigkeit bei 3D-FE-Modellen

• Nominierung und Auszeichnung beim Dynamore-Preis 2016
 MSc. Christian Gierden
 Mechanische Formoptimierung mittels Phasenfeldmethode

2.9 Stipendien

• **Yuri Lapusta**

2.10 Auslandskontakte über das Erasmus-Programm

• **IFMA-French Institute of Advanced Mechanics**
 Campus de Clermont-Ferrand/Les Cezeaux
 F-63175 Aubière, France
3 Forschung

3.1 Forschungsarbeiten

- Optimierung von Stabtragwerken durch objektorientierte Programmierung und progressive Ansätze A. Keller

- Numerische Stabilitätsuntersuchungen von Tragwerken mit zufallsverteilten geometrischen und materiellen Imperfektionen M. Fina

- Parallel and distributed computing of large FE models of composite shells P. Jarzębski

- Spannungsfeldtheorie und erweiterte Kontinuumsmechanik für Modelle mit höheren Gradienten oder Multiphysik I. Münch

- Fehlerschätzer und erweiterte FEM Methoden zur Steigerung der Effizienz in der Mehrphasenmodellierung I. Münch

- Entwicklung robuster gemischter Interface-Elemente für die FE-Simulation von Delaminatioin in Faserverbundbauteilen T. Herwig

- Konstitutive Modellierung nichtlinearer Viskoelastizität zur Untersuchung von Photovoltaik-Modulen M. Köpple

- Entwurf und Simulation ferroelektrischer Nano-Strukturen M. Krauß

- FE²-Modelle für Schalentragwerke mit Anwendung auf geschichtete Werkstoffe J. Läufer

- Formulierung robuster Schalenelemente auf der Basis gemischter Variationsprinzipien W. Wagner

- Simulation des Tragverhaltens von faserverstärkten längsversteiften Zylinderschalen W. Wagner

- Grundlegende Untersuchungen zur Mehrskalenmodellierung in FEAP W. Wagner

- Gewinnung elektrischer Energie aus mechanischer Deformation durch ferroelektrische Strukturen auf der Nanoebene F. Wöhler
3.2 Veröffentlichungen

- **Gruttmann, F., Wagner, W., Knust, G.:** A Coupled Global–Local Shell Model with Continuous Interlaminar Shear Stresses, Computational Mechanics, 57 (2016), 237–255. http://dx.doi.org/10.1007/s00466-015-1229-z

- **Wagner, W., Gruttmann, F.:** An adaptive strategy for the multi-scale analysis of plate and shell structures with elasto-plastic material behaviour, Technische Mechanik, 36(1-2), (2016), 132 - 144.

- **Gruttmann, F., Wagner, W., Knust, G.:** A shell element for laminated structures with continuous interlaminar shear stresses, European Congress on Computational Methods in Applied Sciences and Engineering, 5-10.06.2016 Crete Island, Greece.

- **Fina, M., Wagner, W.:** On the Impact of the Correlation Length on the Buckling Behaviour of Thin Walled Structures with Randomly Distributed Imperfections, 12th World Congress on Computational Mechanics (WCCM XII), July 24-29, 2016, Seoul.

- **Herwig, T., Wagner, W.:** On the development of a coupled two-scale model for robust interlaminar damage analysis of composite structures, 12th World Congress on Computational Mechanics (WCCM XII), July 24-29, 2016, Seoul.

- **Krauß, M., Münch, I.:** Gradient based enhanced finite element formulation for diffuse phase interfaces. PAMM, 16(1), (2016), 459 -460. http://dx.doi.org/10.1002/pamm.201610218

- **Wöhler, F., Münch, I.:** Extended balance of linear momentum from higher gradient stress field theory. PAMM, 16(1), (2016), 407 -408. http://dx.doi.org/10.1002/pamm.201610192

- **Münch, I., Neff, P.:** On isotropy conditions in second gradient materials. PAMM, 16(1), (2016), 735 -736. http://dx.doi.org/10.1002/pamm.201610356

- **Neff, P., Ghiba, I.-D., Madeo, A., Münch, I.:** Null-Lagrangians and the indeterminate couple stress model. PAMM, 16(1), (2016), 379 - 380. http://dx.doi.org/10.1002/pamm.201610178

- **Läufer, J., Wagner, W.:** On the influence of the FE-mesh-discretization on the damage simulation of laminated composite structures, 19th International Conference on Composite Structures, September 05-09, 2016, Porto.

• Münch, I.: Nonlocal balance of angular momentum from stress field Analysis, Joint Annual Meeting of GAMM and DMV, March 6-10, 2017, Weimar, Germany.

3.3 Vorträge

- **Münch, I.**: Spannungsfeldtheorie zur Erweiterung der mechanischen Bilanzsätze, FE im Schnee, 28.02.-02.03.2016, Hirschegg, Austria.

- **Köpple, M.**: Untersuchungen zur numerischen Modellbildung von Verbundglasstrukturen mit PVB-Zwischenschicht, FE im Schnee, 28.02.-02.03.2016, Hirschegg, Austria.

- **Läufer, J.**: Untersuchung des Netzeinflusses bei der Schädigungssimulation von Faserverbundlaminaten, FE im Schnee, 28.02.-02.03.2016, Hirschegg, Austria.

- **Wöhler, F., Münch, I.**: Extended balance of linear momentum from higher gradient stress field theory, Joint Annual Meeting of GAMM and DMV, March 7-11, 2016, Braunschweig, Germany.

- **Münch, I., Neff, P.**: Rotational invariance conditions in gradient elasticity from spatial and referential frame rotation, Joint Annual Meeting of GAMM and DMV, March 7-11, 2016, Braunschweig, Germany.

- **Krauß, M., Münch, I.**: Gradient based enhanced finite element formulation for diffuse phase interfaces, Joint Annual Meeting of GAMM and DMV, March 7-11, 2016, Braunschweig, Germany.

- **Neff, P., Ghiba, I.-D., Madeo, A., Münch, I.**: Old and new thoughts on the indeterminate couple stress model, Joint Annual Meeting of GAMM and DMV, March 7-11, 2016, Braunschweig, Germany.

- **Fina, M., Wagner, W.**: On the Impact of the Correlation Length on the Buckling Behaviour of Thin Walled Structures with Randomly Distributed Imperfections, 12th World Congress on Computational Mechanics (WCCM XII), July 24-29, 2016, Seoul.

- **Herwig, T., Wagner, W.**: On the development of a coupled two-scale model for robust interlaminar damage analysis of composite structures, 12th World Congress on Computational Mechanics (WCCM XII), July 24-29, 2016, Seoul.

- **Läufer, J., Wagner, W.**: On the influence of the FE-mesh-discretization on the damage simulation of laminated composite structures, 19th International Conference on Composite Structures, September 05-09, 2016, Porto.

• Münch, I.: Nonlocal balance of angular momentum from stress field Analysis, Joint Annual Meeting of GAMM and DMV, March 6-10, 2017, Weimar, Germany.

3.4 Vorträge im Seminar für Baustatik

- **Julia Mödl, David Bassier, Maja Pausch**
 Modellierung einer TT&C Bodenstationsantenne zur Überprüfung der elektrischen Performance

- **Tim Heller, Manuel Knecht, Robert Buffler**
 Stat. Berechnung an einer doppelt gekrümmten, seilnetzgestützten Membrankonstruktion

- **Eric Sonderegger, Thi Hang Nga Nguyen**
 Container City II London, England

- **Özden Cakiroglu, Engin Kavakli**
 Sanatorium Istanbul, Türkei

- **Thilo Frisch, Roland Bizer, Julian Dick**
 Das Atomium in Brüssel, Belgien

- **Andreas Müller, Sergio Camacho**
 Center for Character and Leadership Development, USA

- **Lena Kuhn, Sarah Rist, Tanja Ringwald**
 Das Sonnenrad „Sohljul“ in Give, Dänemark.

- **Juliane Gölz, Raphael Svetlik, Simon Aurand**
 Gestapelte Landschaften – der holländische Pavillon, Hannover

- **Jan Wolber, Lisa Steiner, Felix Pult**
 Alte Waage-Konstruktion eines historischen Dachstuhls

- **Georg Christou, Tugay Özcan, Vasileios Boutsioukis**
 The Athens Acropolis Boutique Hotel

- **Anna Zehlicke, Helena Hingmann**
 Fußgängerbrücke ‘Wrakhoutbrug’, Wenduine (Belgien)

- **Ivona Gazibaric, Franziska Ferstl, Falk Wagemann**
 Der Baumturm im Nationalpark Bayerischer Wald

- **Till Heiland, Niklas Bernhart, Niklas Opitz**
 Modell einer Wasserrutsche

- **Andreas Metzger**
 Tragstrukturen für Architektur und Bauwesen aus Stahl hergestellt durch wirksmedienbasierte Umformung ohne Formwerkzeug

- **Felix Huber**
 Schlossbergturm Freiburg

- **Jeremy Geiger**
 Modellierung von 2D-Vouten-Elementen: Theorie und numerische Modelle
• Alexandra Wahn
 Theorie 2. Ordnung: Theorie und Umsetzung im Rahmen des Verschiebungsgrößenverfahren

• Lukas Panther
 Stabilitätsuntersuchungen von Plattenstrukturen aus Faserverbundmaterial mit zufallsverteilten materiellen Imperfektionen

• Sergio Martin Román
 The double arch bridge: A finite element analysis thesis and engineering design Project

• Bekir Belek
 Momentenspannung in höherer Elastizitätstheorie – Variationsformulierung, Spannungsanalyse und analytische Beispiele

• Mareike von Arnim
 Standfestigkeit von Gebäuden in Hochwassergebieten – Berechnungsmethoden und statische Nachweise

• Jan Zoller
 Entwicklung eines Mehrskalenmodells für nichtlineare Verbundglasstrukturen

• Verena Becker
 Eine Gradientenerweiterung für ein isotropes Schädigungsmodell zur Vermeidung der Netzabhängigkeit bei 3D-FE-Modellen

• Christian Gierden
 Mechanische Formoptimierung mittels Phasenfeldmethode

• Annika Brosi
 Optimierung von Stabtragwerken mit Evolutionsstrategien

• Stephanie Hambsch
 Numerische Simulation von endlosfaserverstärkten Kunststoffbauteilen unter Biegebeanspruchung mit Analyse der Schädigungs- und Versagensmechanismen nach dem Materialmodell von Camanho

• Pawel Jarzebski
 Parallelized FE code with use of OpenMP

3.5 Institutsmitteilungen

• Mitteilung 01/2016
 W. Wagner
 Jahresbericht 2015
3.6 Gutachertätigkeiten

Prof. Wagner

- Gutachter für International Journal for Numerical Methods in Engineering
- Gutachter für Computer Methods in Applied Mechanics and Engineering
- Gutachter für Computational Mechanics
- Gutachter für Computers & Structures
- Gutachter für International Journal of Solids and Structures
- Gutachter für Composite Structures
- Gutachter für International Journal of Structural Stability and Dynamics
- Gutachter für Composites Part A
- Gutachter für Engineering Fracture Mechanics
- Member - Editorial Board Mechanics of Advanced Materials and Structures

Dr.-Ing. Münch

- Gutachter für Computers & Structures
- Gutachter für International Journal of Solids and Structures
4 Aktivitäten in Organisation von Lehre und Forschung

4.1 Mitwirkung in Universitätsgremien

Prof. Wagner:

- Mitglied in der Studienkommission
- Mitglied und Vorsitzender der Hauptprüfungskommission
- Mitglied und Vorsitzender der Masterprüfungskommission
- EDV-Beauftragter der Fakultät und Ansprechpartner für das Rechenzentrum (CIP-WAP)
- Mitglied der Senatskommission für Prüfungsordnungen, Auswahl und Zulassung (SK POAZ)

Dr. Münch:

- Strahlenschutzbeauftragter Baustatik des Karlsruher Instituts für Technologie - Campus Süd

4.2 Mitgliedschaft und Aktivitäten in Organisationen

Prof. Wagner:

- Mitglied der Vereinigung der Prüfingenieure für Bautechnik in Baden-Württemberg e.V.
- Mitglied der Bundesvereinigung der Prüfingenieure für Bautechnik e.V.
- Mitglied der Ingenieurkammer des Landes Baden-Württemberg
- Mitglied im Beirat der BVS der Prüfingenieure für Bautechnik des Landes Baden-Württemberg
- Mitglied im Ausschuss für die Anerkennung von Prüfingenieuren im Umweltministerium des Landes Baden-Württemberg
- Gutachter für die Deutsche Forschungsgemeinschaft (DFG)
- Gutachter für den Deutschen Akademischen Austauschdienst (DAAD)
- Gutachter für die Alexander von Humboldt Stiftung (AvH)
4.3 Mitgliedschaften in wissenschaftlichen Vereinigungen

Prof. Wagner:

- Mitglied der GACM (German Association for Computational Mechanics)
- Mitglied der GAMM (Gesellschaft für Angewandte Mathematik und Mechanik)
- Mitglied in der GARTEUR (Groupe Aeronautical and Technical Research in Europe)

Dr. Münch

- Mitglied der GACM (German Association for Computational Mechanics)
- Mitglied der GAMM (Gesellschaft für Angewandte Mathematik und Mechanik)
5 Kontakte

5.1 Auslandsbeziehungen

unter anderem:

- Departament de Resistència de Materials I Estructures a l’Enginyeria, Universitat at Polytècnica Superior d’Enginyers de Camins, Canals I Ports, Barcelona
- Royal Institute of Technology, Structural Mechanics, KTH, Stockholm
- Department of Civil Engineering, University of Calgary, Calgary
- Ecole Normale Superieure de Cachan, LMT, Cachan
- IFMA-French Institute of Advanced Mechanics, Clermont-Ferrand
- Institut für Leichtbau und Struktur-Biomechanik (ILSB), Technische Universität Wien, Wien
- Institute of Applied Mechanics, University of Zagreb, Zagreb
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley
- Institute of Engineering Mechanics, University of Nottingham, Nottingham
- Institut für Faserverbundleichtbau und Adaptronic DLR, Braunschweig
- NLR, Nationaal Lucht- en Ruiuntevaartlaboratorium (National Aerospace Laboratory), Amsterdam
- FOI, Swedish Defence Research Agency, Aeronautics Division, Kista, Stockholm
- Composites CRC: Cooperative Research Centre for Advanced Composite Structures, Melbourne
- Institute of Fundamental Technological Research Polish Academy of Sciences, Warschau
- Department of Engineering Science, University of Oxford, J.E. Huber
- Aerospace Engineering & Engineering Mechanics, The University of Texas at Austin, Chad M. Landis
6 Impressionen von einigen Veranstaltungen

- BilfingerSE Preis 2015, 15.01.2016

- Finite Elemente im Schnee, 28.02-02.03.2016

- 7th Winter Colloquium Mechanics and Advanced Materials, La Clusaz, 28.02-06.03.2016
• Sommerfest Fakultät, 21.06.2016

• FE-Anwendungen in der Baupraxis, 11.07.2016

• Institutsausflug Bad Wildbad-Eyachtal-Kaltenbronn-Enzklosterle, 14.07.2016

• FE-Anwendungen in der Baupraxis, 25.07.2016

• 12th World Congress on Computational Mechanics (WCCM XII), 24.-29.07.2016, Seoul
• Tillmann Herwig Hochzeit, 13.08.2016

• 40th Solid Mechanics Conference, 29.08-02.09.2016, Warsaw

• Special Workshop on Multiscale Modeling of Heterogeneous Structures,
21.-23.09.2016, Dubrovnik

- FE-Anwendungen in der Baupraxis, 02.11.2016