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‘ 1. Motivation I

The load-bearing capacity of a compo-
site can be increased by optimally po-
sitioning the used materials within the
component. For this purpose, a pha-
se field model is developed which per-
forms topology optimization of a two-
component composite. Similar to rein-
forced concrete, the reinforcing material can hold tensile stresses to
a much higher extent than the matrix. Mechanical fields and the pha-
se field are determined by isogeometric analysis (IGA) to obtain a
high approximation order.

‘ 2. The Phase Field Model I

A phase field variable ¢ is introduced, which indicates regions of
matrix material for ¢ = —1 and regions of reinforcing material for
¢ = +1. A diffuse transition zone interpolates between the two
states. Main part of the total energy functional
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It reduces inhomogeneity of the first principal stress o7 within the de-
sign domain. The transition zone at interfaces remains thin due to
the double-well potential Y. Large interfaces as well as high gra-
dients of ¢ are penalized by Y4a49. The mechanical energy ¥mech
and contributions from external loads Wy, are also taken into ac-
count. Minimizing the total energy with respect to displacements u
and phase field variable ¢ leads to an optimized topology. During
this process, the phase field variable evolves according to the non-
conserving Allen-Cahn equation
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The volume share of reinforcement is implicitly imposed by K.

‘ 3. Isogeometric Analysis I

IGA is used to determine displacements u and phase field variable
@. It generalizes the finite element method by employing non-uniform
rational B-Splines (NURBS) for the approximation. The IGA shape
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functions in two and three dimensions read
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with weights w > 0 and B-spline basis functions
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They are defined on a knot vector & = {Co,C1,...,Cutp+1}, CONtaI-
ning monotonously increasing real values.
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‘ 4. Numerical Examples I

The phase field model is applied to a two-dimensional and to a three-
dimensional two-span beam of dimensions L = 20m, H = 2m, and
in three dimensions W = 2m. The loads induce pressure singulari-
ties with high transversal tension stresses. In two dimensions, plane
stress is assumed and the beam is discretized with 160 x 80 inte-
gration cells. To reduce the computational cost, simulations of the
three-dimensional beam are carried out on one half of the system
by taking into account its symmetry. The halved beam is discretized
with 52 x 52 x 12 integration cells. In both cases, cubic NURBS sha-
pe functions are employed. For K = 0.2, optimized topologies of the
reinforcement are obtained and the corresponding fields of the first
principal stress ¢y are considered:
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Reinforcement is positioned in areas of high flexural tensile stress
and combined to a coherent structure. In addition, small crescents
of reinforcing material account for high transversial tension stresses.
The evolving topology concentrates tensile stresses within the re-
inforcement and thus reduces them within the matrix. For varying
mechanical properties and values of K, the model successfully ge-
nerates plausible topologies.



