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1. Motivation

The load-bearing capacity of a compo-
site can be increased by optimally po-
sitioning the used materials within the
component. For this purpose, a pha-
se field model is developed which per-
forms topology optimization of a two-
component composite. Similar to rein-
forced concrete, the reinforcing material can hold tensile stresses to
a much higher extent than the matrix. Mechanical fields and the pha-
se field are determined by isogeometric analysis (IGA) to obtain a
high approximation order.

2. The Phase Field Model

A phase field variable ϕ is introduced, which indicates regions of
matrix material for ϕ = −1 and regions of reinforcing material for
ϕ = +1. A diffuse transition zone interpolates between the two
states. Main part of the total energy functional

Π =
∫

Ω
[Wint + Ψwell + Ψgrad + Ψmech + Wext] dV

is the internal work contribution

Wint = cγϕ
σ̄1(K̂)− σ1(ϕ, ε(u))

σ̄1(K̂)
.

It reduces inhomogeneity of the first principal stress σ1 within the de-
sign domain. The transition zone at interfaces remains thin due to
the double-well potential Ψwell. Large interfaces as well as high gra-
dients of ϕ are penalized by Ψgrad. The mechanical energy Ψmech

and contributions from external loads Wext are also taken into ac-
count. Minimizing the total energy with respect to displacements u
and phase field variable ϕ leads to an optimized topology. During
this process, the phase field variable evolves according to the non-
conserving Allen-Cahn equation

∂ϕ

∂t
= − 1

ω

dΠ
dϕ

.

The volume share of reinforcement is implicitly imposed by K̂.

3. Isogeometric Analysis

IGA is used to determine displacements u and phase field variable
ϕ. It generalizes the finite element method by employing non-uniform
rational B-Splines (NURBS) for the approximation. The IGA shape

functions in two and three dimensions read

Rp,q
i,j (ξ, η) =

Ni,p(ξ) Mj,q(η) wi,j
n
∑

i=0

m
∑
j=0

Ni,p(ξ) Mj,q(η) wi,j

Rp,q,r
i,j,k (ξ, η, ζ) =

Ni,p(ξ) Mj,q(η) Lk,r(ζ) wi,j,k
n
∑

i=0

m
∑
j=0

l
∑

k=0
Ni,p(ξ) Mj,q(η) Lk,r(ζ) wi,j,k

with weights w > 0 and B-spline basis functions

Ni,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1− ξ

ξi+p+1− ξi+1
Ni+1,p−1(ξ) .

They are defined on a knot vector Ξ = {ξ0, ξ1, . . . , ξn+p+1}, contai-
ning monotonously increasing real values.

4. Numerical Examples

The phase field model is applied to a two-dimensional and to a three-
dimensional two-span beam of dimensions L = 20 m, H = 2 m, and
in three dimensions W = 2 m. The loads induce pressure singulari-
ties with high transversal tension stresses. In two dimensions, plane
stress is assumed and the beam is discretized with 160 × 80 inte-
gration cells. To reduce the computational cost, simulations of the
three-dimensional beam are carried out on one half of the system
by taking into account its symmetry. The halved beam is discretized
with 52× 52× 12 integration cells. In both cases, cubic NURBS sha-
pe functions are employed. For K̂ = 0.2, optimized topologies of the
reinforcement are obtained and the corresponding fields of the first
principal stress σ1 are considered:
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Reinforcement is positioned in areas of high flexural tensile stress
and combined to a coherent structure. In addition, small crescents
of reinforcing material account for high transversial tension stresses.
The evolving topology concentrates tensile stresses within the re-
inforcement and thus reduces them within the matrix. For varying
mechanical properties and values of K̂, the model successfully ge-
nerates plausible topologies.


