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In this paper, an in-depth assessment of buckling loadsroétsires with random material
and geometrical imperfections is presented. A wide vamétynethods for the simulation of
Gaussian stochastic processes are available. Here, theif@r-Loeve Expansion and the
spectral representation method are used. In these mettimdsprrelation length controls
the shape of the random field and hence the shape of imperisctivhich has a significant
influence on the buckling load. Thus, a parameter study fmpaed at different geometries: a
steel plate under axial compression and a U-shaped cantbheam. Additionally, the random
imperfections can be computed for curved structures likEREcylinder. For the assessment
of the stochastic numerical model, the buckling load angslsicompared with the analytical
solutions and experimental results. At last, the diffeiergact of geometrical and material
imperfections on the critical buckling load is recognized.

Keywords Random Imperfections; Spectral Representation; Kanmwm@&ve Expansion;
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Introduction

In structural engineering, the need of thin-walled struetuis becoming increasingly im-
portant. Especially in the automotive and aerospace inglustlightweight design is used
to save e.g. fuel. Because of the slim design, the loss ofligfafiecomes more relevant
and imperfections have a major impact on the critical buckload. These imperfections
can be variations of the nominal geometry or a spatial véitiabf the material parameters.
Regulations are often not available for complex structlikescylindrical shells. Currently,
the buckling load of a perfect structure has to be multipbgda knock-down factor, which
is determined in sophisticated experiments. Such a serpirea approach for isotropic
and orthotropic cylindrical shells, which is still used,syaublished in 1965 by the National
Aeronautics and Space Administration [Seide and Weing1@65)]. In the Eurocode 3 (DIN
EN 1993), the standard for design and construction of steattsires, another conventional
deterministic approach is proposed. Here, the materiabaodnetrical imperfections should
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be taken into account in the form of critical eigenmodes withpecified amplitude for the
FE-Model. Beside the accuracy in computing methods, a lddtaepresentation of the
imperfections for the numerical model is needed. Becaushaf random character, the
spatial variation of uncertain geometric and material props can be described by random
fields. A first probabilistic approach is published by [Arzcand Babcock (1991)]. There,
the results of measurements of initial imperfections apresented in Fourier series and
the Fourier coefficients are computed as random variablesvaays, the imperfections are
treated as random fields for a more realistic descriptioomPthe wide variety of methods for
the simulation of Gaussian stochastic fields, in this wdnk, gpectral representation method
from [Shinozuka, M. and Deodatis, G. (1991)] and the Karimiheeve Expansion (K-L) from
[Loeve (1977)] are used. In both methods a control parametdl known as the correlation
length, is available, which controls the shape of the ranfielth. Also for a parameter study,
the direct Monte Carlo Simulation (MCS) is used to simulagedtochastic buckling behaviour.

Generation of Random Imperfections by using Karhunen-La@&ve Expansion and
Spectral Representation Method

There are two main types of stochastic fields: Gaussian orGeurssian. Most of the
parameters in engineering systems are non-Gaussian,dorme material (Young's modulus
and Possion’s ratio) or geometric parameters (thickneegqhase angles of the fibre alignment
for composite materials, among others). But, due to theddelkperimental data the Gaussian
approach s often used [Stefanou (2008)]. In this work, thehkinen-Loéve Expansion is used
to compute the random geometrical imperfection and aduitlg the spectral representation
method was selected to compute the random material impgierisc Both can be easily
implemented in a Finite-Element-Code on element level.

The Karhunen-Lave Expansion

Based on the idea that a continuous random function can weseped by a complete set
of deterministic functions with corresponding random ficednts, the K-L Expansion was
introduced for representing a random field [Zhang and BENiogd (1994)]. The series is given

by
z = (@) Vi (1)
k=1

wherex describes the random fieldy;, and )\, are the eigenfunctions and eigenvalues of
the autocovariance functiofi(z;, ;) with the position vectoi: = [#; #2]7. The variable

& is the uncorrelated Gaussian random variable with zero raedrunit standard deviation.
Because the last eigenvalues and eigenvectors have a laetiimp the final random field, the
series is usually truncated afterterms to save computing time [Stefanou and Papadrakakis
(2007)]. Due to that, the vector of the eigenvalues has tolted by descending order.

A=A A2 )T with Ay > >0 >0, 2)
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Also, the K-L Expansion is a set of orthogonal determinifiticctions, the eigenfunctions of
the covariance and uncorrelated random variables. Therefloe K-L Expansion can only
be accomplished if the eigenvalues and eigenfunction ottivariance function are known.
Hence, the covariance function must be predetermined.,lderexponential form for a 2-D
field is used from [Shang and Yun (2013)]

d(iaj—)} = exp [_ V(@1 — @15)% + (B2 — #95)?

C(&;,@4) = exp [— (3)

le le

and in matrix notation
O(i17i1) tet C(i17in)
C= A @)
C(&n,21) -+ C(&n, Zy)

whered(i, ) is the distance between two nodes dnds the correlation length. Due to the
symmetry of the covariance function, the covariance mé&rsymmetric and positive definite.
The correlation length controls how quickly the covariafadks off. Forl,. tending to infinity

or a zero distance between two separated points, the exfimreavariance function converges
to the value one, that means two points are full dependeher@tse, if the distance is greater
than the correlation length, the points are nearly indepehd he effect on the random field is
shown in Fig. 1 for a square plate with« 7 nodes. The shape becomes more uniform for great
values ofl.. Often, engineering structures consist of many individiahponents. So, it is

Fig. 1. Unconstrained covariance function and the finaloaméleld for different correlation lengthis.

necessary that some points of the random fields have a valaeroffor their connection.
This is possible with an adapted covariance matrix wherecthariances of the relevant
nodes are vanishing. For Gaussian random fields, this caedmmplished on the basis of
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a stochastic interpolation [Baitsch & Hartmann (2005)].eTdonstrained covariance matrix
can be expressed as follows

C=C-BA'BT (5)
where
C(&1,21) -+ C(&1,%m)
A=| (6)
C(@m, ®1) - C(Zm, Tyn)
with the pointszy, ..., &, for which the covariance is known to delete and
O(ilvil) T C(ilvim)
B=| i )
C(&n,®1) -+ C(&n, Tm)

with the covariances of the unconstrained and constrair@cksp Now, for the example

Fig. 2. Constrained covariance function and the final rantield for different correlation lengthk.

the geometrical imperfections for the square plate shoiddpgpear on the edges. So the
covariances of the 24 edge nodes have to be deleted. The ieautonstrained and fitted
covariance matrix with diagonal values smaller than one.

The Spectral Representation Method

The spectral representation method expands the multirdiioeal, homogeneous Gaussian
stochastic field as a sum of trigonometric functions withd@m phase angles and amplitudes.
The method is described in more detail by [Shinozuka and BE®@1996)] or [Stefanou
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and Papadrakakis (2007)]. Here, the formula for the simardadf a 2D-1V homogeneous
stochastic field is used with the series of cosines
N1 1N2 1|:

($1,$2 \/_ Z Z

ny= 0n2 0

1)
Agzlng COS (Iilnlxl + K2n,T2 + d)n]ng )

+ A$121)n2 COs (lenxl + R2n, T2 + ¢n21)7$12 ) :| (8)

Wheregbgfl)ﬁ?,j = 1,2 are independent random phase angles distributed uniforudy the
interval[0, 27| for the (4) simulation.Aﬁlll)n2 ; Agi)nz are defined as

Anl na \/2Sff ’{1"1 » K2ny )A51A52 (9)
Amnz \/2Sff (Kiny, —hK2n, ) Ak Ako (10)
where
Kiny = M1AKL;  K2p, = N2k (11)
Kiy Rou
Ary === Akg = — 12
R1 N, 5 Ko Ny ( )
n1:O,1,...,N1—1; ngzo,l,...,NQ—l (13)

Nj, j = 1,2 are the numbers of trigonometric functions terms apd j = 1,2 are the upper
cut-off wave numbers corresponding to theandzs axes in the space domain, which define
the active region of the power spectru$i;(x1, k2). This implies that the power spectral
density function is assumed to be zero outside the regionetihy

—Klu LK1 S Kiw  — Kouw < Ko < Koy (14)

The two-sided power spectral density function is given by

2
g
Syr(kr, kg) = 4—;171172 exp 4(171/-;1 + b2k2) (15)

whereo ¢ is the standard deviation of the stochastic field &na-, are the correlation param-
eters. A very important point is that the simulated stodhdild f (1, 22) is asymptotically
Gaussian as the number of terms in the cosine series appoadimity: N; — oo, because
of the central limit theorem. A popular aspect of the metteothat the cosine series formula
can be numerically computed very efficiently using the Fastrier Transform technique. In
this method, the random field is often decomposed into a mdnéstic part and stochastic part
as follows

f(@1,22) = po + f(21,22) (16)

with the constant mean. It has to be taken into account that the mean of the randoth fiel
f(z1,22) converges to zero only for great numbers\of. In Fig. 3 the random field is shown
for a square plate with the dimensiaf00 x 1000 mm and different correlation parameters.
Here, the field becomes more uniform for great valudsg @ndb,. Additionally, the waviness
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of the shape depending on the direction can be controlledéghoice of different correlation

parameters.
Spr(K1us fizu) Sy (K1, Kou) St (F1us K2u)
8+10° 4103 8*10°
0 0 0
0.0474 0.0474 0.00474
fz1,22)

1000

Fig. 3. Spectral representation with different cut-off wawmbers and correlation parametes: left:
b1 = by = 100 mm, centre:by = 100, by = 500 mm and right:b; = bs = 1000 mm.

Monte Carlo Simulation (MCS) with a Nonlinear Quadrilatera | Shell Element

==

Fig. 4. Stress resultants on the reference plane (RP) anghwiogy of a layered material.

In this work a non-linear four-node isoparametric shelhedat with six nodal degrees of
freedom (three global displacement and three global mtatat each node) from [Wagner
and Gruttmann 2005] is used. To avoid shear locking, thenasdunatural strain method
(ANS) from [Dvorkin and Bathe 1984] is implemented. As wdly modelling composite
laminates, the single-ply shell model is extended to a kydormulation with a freely
selectable reference plane. The random deviations fromdh@nal geometry are described
by initial nodal displacements of the Finite-Element-MeEhis field of displacement must be
read in before the finite-element calculation can be lauticMoreover, the random material
properties like Youngs modulus, shear modulus and Poisstiosare computed on element
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level of the shell formulation and in case of transversat@uc layered materials, the change
of layer thickness and fibre alignment can be taken into atcou

Numerical Examples

The used shell element and the random material imperfectiame been implemented in an
extended version of the general finite element program FEARI$r (2011)]. For the random
geometrical imperfections a new external program was deesl.

Axially Compressed Steel Plate

p labile perfect

perit+ "‘/ —_-

Pl
// imperfect

2

t
Ucrit

Fig. 5. Geometry and load-deflection curve of an axially coeeped steel plate.

First, random geometrical imperfections are applied on>aallg compressed steel plate
(E = 210000 N/mm?, v = 0.3) with the thickness = 10mm. Here, the aspect ratio
a/b = 1 with a = b = 1000 mm is tested and the results of unconstrained and constrained
imperfections are compared. For the FE-mafek 30 elements are used. The illustrated slab
is simply supported. If the structure is loaded with impetitens, no distinct stability point
occurs. Also a smooth equilibrium path occurs, which is sihéwFig. 5. Therefore, the
critical displacement...,.;; = 0.362 and loadp...;; = 798 kN is calculated with an eigenvalue
analysis of the perfect structure and then the imperfedegplare loaded by displacement
control until the displacement,.,.;; is reached. According to Eurocode EN 1993 (EC 3) the
first eigenmode as a critical imperfection is applied withaanmplitude ofAw = 5mm. The
FE-solution leads to a load 610 N (0.72 p,i¢). All buckling loads are normalized t@.,.;;
and the Monte-Carlo-Simulation (MCS) includes 30 reaisa. Fig. 6 shows that with an
increasing correlation length the variance of the bucKliagls decreases. The reason for thatis
caused by the Karhunen-Loéve Expansion and the truncafitige series after k terms. That
means that the sum of the series becomes smaller, thus alsorplitude of imperfection.
To reverse the problem, the amplitude has to be scaled. lHesealing of7 mm is used as
suggested by Eurocode. Now, the results for scaled impefec(Fig. 7) show a greater
variance. It can be concluded that the results of the canstiglate, where the imperfections
of the edges are zero, have a smaller variance and the loealslag to Eurocode 3 are on the
safe side.
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Fig. 6. Plate a/b=1: Load vs. correlation length (left: umgtoained and right: constrained) - unscaled.
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Fig. 7. Plate a/b=1: Load vs. correlation length (left: umgtoained and right: constrained) - scaled to
an amplitude o mm.

U-Shaped Cantilever Beam

profile

0.05

Fig. 8. Geometry and one selected random geometrical imgtéh (50x enlarged) of the cantilever
beam.



October 4,2016 1:29 RPS/Trim Size: 24cm x 17cm for Procesditdited Book ipw15-paper

The 13" International Probabilistic Workshop (IPW2015)
4 - 6 November 2015, University of Liverpool, UK
Edoardo Patelli & loannis Kougioumtzoglou (editors)

The used stochastic methods can be applied to combinedwstac Here, an U-shaped
cantilever beam from [Chroscielewski et al.] is used. Wagerial characteristics{ = 1-107,
v = 0.333) are dimensionless and for the FE-mogigklements in length direction, 6 elements
for the web and 2 elements for the flanges are selected. Thme ise@ot loaded at the centre
of shear, so torsional flexural buckling is the relevant motiéailure at F..,.;; ~ 109 and
werip ~ 0.2, In this case the Eurocode 3 proposes two separate amifadé¢he critical
eigenmode: Awwen = 0.03 and Awnanges = 0.01, which also are used for scaling the
imperfections, because no more detailed information islada. In Fig. 1 the sample of
the random geometrical imperfections with the chosen tatios lengthl, = 360 is shown.
The stochastic fields of the three parts flange-web-flangecamgputed separately with respect
to the constrained nodes. The buckling behaviour is stutbhedwo different non-linear
theories. Taking into account finite rotations (FR) a stiffy effect can be observed. For
the simplification of moderate rotations (MR) the curve amms to decline after the critical
point, so no lower bound can be detected. Therefore, thenkatic is used for the stochastic
simulation. The results show that the load-displacememvecaf the cantilever beam with the
eigenmode as imperfection is no more the lower bound.

100

[0}
o
I

imperfect
== Theory MR 10 -Aw
==+ Theory FR -
== eigenmode as imperf)

w w

Fig. 9. U-shaped cantilever beam: load-displacement curve

Composite Cylindrical Shell Z07

A fiber-compound cylinder, named Z07 from [Kriegesmann et2010] is also considered
as stochastic in its geometry and material. For the FE-M@deadlements in circumferential
direction and 24 elements in vertical direction are usedthéumore the transversal isotropic
material parameters and their stochastic characteriatie been obtained from [Degenhardt et
al. (2007)]. The measured geometrical imperfections aneegleas the basis for the stochastic
model. Here, an imperfection of arouB@ mm is picked out for the scaling and to achieve the
similar shape. The correlation length2if 000 mm is selected. For computing the stochastic
field the cylinder is unrolled and the geodetic distance Bdusee Fig. 10. Also for the
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top view

510

L. = 20000mm

Fig. 10. Cylinder Z07: Geometry and Measurement of the ga&acaélmperfections by [Kriegesmann
et al. (2010)] with one selected stochastic imperfection= 20 000).

constrained covariance function double nodes have to betadkl Besides the deviation of
the surface, the thickness and stiffness variation are otedpvith the spectral representation
method. Therefore, the correlation is defined with respethé length by the ratios; /L;
(thicknessbd; /L; = 0.35 and stiffnessb; /L; = 0.175). To complete the stochastic model, the
fibre alignment is also randomly distributed with a varianté.5 % of the mean. The graph
in Fig. 11 shows that the results of the complete stochasbideinare similar to the sample
results from [Kriegesmann et al. (2010)] and to the empliieacurve from the NASA report
[Seide and Weingarten (1965)]. Additionally, the rightgiiashows the differentimpact on the
buckling load of all imperfections with the test data fromifishe et al. (2008)]. In summary,
the geometrical imperfections have a greater impact on tle&limg load than the material
variations.

1 18
perfect ' ' [ ]
test data '
I N ¢ imperfect
0-75 I ° empirical 075— o °
£ : .
& . = ]
EREE] N B KR . & o5k .
i é = ’ i . a
i | 1 ‘-
0.25F ' s I = ] : 025 _--. CLLTTETT o ELTEETTE EEn
3 i [] ® imperfect
0 | | | ° test data
== _empirical
0 500 1000 1500 2000 0 . 2 L
R/t surface thickness angle  stiffness complete

Fig. 11. R-tcurve and summary of all imperfections of therzjér Z07.

Conclusion

In this paper, the impact of generated random imperfectonthe buckling load of isotropic
and transversal isotropic shells is investigated. Not dindyeffect of geometrical deviations
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from the perfect shell structure but also the variabilityvofing’s modulus, variations of the
layer thickness and fibre alignment are considered. A stuaty carried out on the influence
of the correlation parameter on the critical buckling loaslloreover, constrained random
fields can be generated for assembly of combined structikesHe U-shaped cantilever
beam. Additionally, taking into account the geodetic dis&for the correlation function,
curved structures can also be simulated. Looking at thieakiuckling load, the geometrical
imperfections have a greater impact than the material oBesnmarized, the results of the
stochastic simulations show a good correlation with expental data. This work is one
step to a stochastic overall model to present a better fetaxfaa lower bound of critical
buckling loads, which are often stated too high in standaBdsed on the great impact of the
imperfection shape it is necessary to have more informatiotine influence of the correlation
parameter.
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