

Zur Berechnung von Wölbfunktion und Torsionskennwerten beliebiger Stabquer-schnitte mit der Methode der finiten Elemente

W. Wagner, F. Gruttmann

Einleitung

Ausführliche Darstellungen der Torsionstheorie nach St.Venant sind in verschiedenen Lehrbüchern beschrieben, z.B. Timoshenko, Goodier:Theory of Elasticity. Dabei sind geschlossene analytische Lösungen des Randwertproblems nur für einige einfache Querschnittsformen möglich. Bei komplizierten Querschnittsformen sind in der Regel nur numerische Lösungen, z.B. mit der FEM möglich. Nachfolgend wird in knapper Form ausgehend von der DGL und den Randbedingungen der St.Venantschen Torsionstheorie die zugehörige variationelle Form des RW–Problems sowie eine entsprechende numerische Umsetzung im Rahmen der FEM angegeben. Damit können die Grund–, Einheits– und Hauptverwölbung sowie die maßgebenden Torsionskennwerte beliebiger Querschnitte berechnet werden.

St. Venantsche Torsion prismatischer Stäbe

Es werden zunächst die in Abb. 1 gezeigten Koordinatensysteme y, z und \bar{y}, \bar{z} sowie eine Randkoordinate s mit dem zugehörigen Tangentenvektor t und dem Normalenvektor n eingeführt.

prismatischen Stabes

Der Stab wird einem Torsionsmoment M_T mit konstanter Verdrillung α unterworfen. Der Verdrehwinkel $\beta_x = \alpha x$ wird als klein vorausgesetzt. Das zugrundeliegende RW-Problem lautet mit der Wölbfunktion w = w(y, z)

 $\begin{array}{lll} \Delta w=0 \mbox{ in } \Omega & n_y(w,_y-z)+n_z(w,_z+y)=0 \mbox{ auf } \partial \Omega. \\ \mbox{Die zugehörige schwache Form erhält man mit} \\ \mbox{Einführung von Testfunktionen } v \mbox{ zu} \end{array}$

$$g = \int\limits_{(\Omega)} [w,_y v,_y + w,_z v,_z] \mathrm{d}A - \oint\limits_{(\partial \Omega)} [n_y z - n_z y] v \mathrm{d}s = 0.$$

Die Torsionsschubspannungen sind durch Ableitungen der Wölbfunktion sowie den Schubmodul G gegeben:

$$\tau_{xy} = G\alpha(w, y - z) \qquad \tau_{xz} = G\alpha(w, z + y)$$

Die sogenannte Grundverwölbung w ist Lösung des RW-Problems. Hieraus können nun die Einheitsverwölbung \bar{w} , die Hauptverwölbung \tilde{w} , die Koordinaten des Schubmittelpunktes y_M, z_M , das auf M bezogene Wölbflächenmoment 2. Grades (Wölbwiderstand) I_ω sowie das Torsionsflächenmoment 2. Grades (Torsionswiderstand) I_T bestimmt werden.

Finite Element Formulierung

Die schwache Form des RW–Problems kann näherungsweise im Rahmen der FEM gelöst werden. Dabei werden für $\mathbf{x} = [y, z]^T$, w und v innerhalb eines isoparametrischen Konzepts die gleichen Ansätze gewählt. Hieraus kann auf dem üblichen Weg ein 4-Knoten-Element entwickelt werden.

Beispiel 1

Hier wird die Anwendung auf ein Walzprofil gezeigt.

Abb. 2: FE-Netz und Hauptverwölbung eines HEM 100

Auf vereinfachenden Rechnungen aufbauende Torsionskennwerte sind in DIN 1025 Teil 4 vertafelt. Die nun vorgelegte 'exakte' Rechnung liefert im Vergleich:

I_T in cm^4			I_ω in cm^6		
DIN 1025	FEM	Δ [%]	DIN 1025	FEM	Δ [%]
68.2	67.271	-1.36	9930	9430.3	-5.03

Beispiel 2

In diesem Beispiel wird die Anwendung auf ein Brückenlager gezeigt. Um Dehnungen des Tragwerks zu berücksichtigen werden Übergangsprofile verwendet. Abb. 3 zeigt ein System, das FE–Netz unter Ausnutzung der Symmetrie sowie die Verteilung der resultierenden Schubspannungen. Das Torsionsträgheitsmoment beträgt $I_T = 2223.7 \ cm^4$.

Abb. 3: System, FE-Netz und Schubspannungsverteilung