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sruhe, Germany

[2 ]Statik u. Dynamik d. Tragwerke, Technische Universität Kaiserslautern, Paul-Ehrlich-Str. 14, D-
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Abstract In this paper we present a nonlinear finite element formulation for piezoelectric
shell structures. Based on a mixed multi field variational formulation, an electro-mechanical
coupled shell element is developed considering geometrically and materially nonlinear behavior
of ferroelectric ceramics. The mixed formulation includes the independent fields of displace-
ments, electric potential, strains, electric field, stresses, and dielectric displacements. Besides
the mechanical degrees of freedom, the shell counts only one electrical degree of freedom.
This is the difference of the electric potential in thickness direction of the shell. Incorporating
nonlinear kinematic assumptions, structures with large deformations and stability problems
can be analyzed. According to a Reissner-Mindlin theory, the shell element accounts for con-
stant transversal shear strains. The formulation incorporates a three-dimensional transversal
isotropic material law, thus the kinematic in thickness direction of the shell is considered.
The normal zero stress condition and the normal zero dielectric displacement condition of
shells are enforced by the independent resultant stress and resultant dielectric displacement
fields. Accounting for material nonlinearities, the ferroelectric hysteresis phenomena are con-
sidered using the Preisach model. As a special aspect, the formulation includes temperature-
dependent effects and thus the change of the piezoelectric material parameters due to the
temperature. This enables the element to describe temperature dependent hysteresis curves.

1 Introduction

Piezoelectric material plays an important role for sensor and actuator devices. In the course
of optimization of systems, shell structures have become more and more interesting. In recent
years, several piezoelectric shell formulations based on the finite element method have been
introduced. One can distinguish between solid shell elements, see e.g. References [1, 2, 3],
and classical formulations, which model the shell by a reference surface, see e.g. References
[4, 5, 6, 7, 8, 9, 10, 11]. Some of these element formulations are restricted to shallow shell
structures, [5, 6, 9, 11], where the initial shell curvature is assumed to be small. In order to
consider laminated structures, the above mentioned formulations include a more or less sophis-
ticated laminate theory. References [5, 10, 12, 13, 14] point out that geometrically nonlinear
characteristics can significantly influence the performance of piezoelectric systems, especially
for the sensor usage. A geometrically nonlinear theory that incorporates large rotations is
presented in References [1, 5, 6, 12]. A common assumption in piezoelectric models is that
the electric field is constant through the thickness. This is not correct for bending dominated
problems. According to Reference [15], a quadratic approach for the electric potential through
the thickness is necessary to fulfill the electric charge conservation law. Shell formulations
incorporating a quadratic thickness potential can be found in References [16, 8, 7]. Mixed

1



shell formulations including independent fields for the electric potential, the electric field, the
dielectric displacement as well as the mechanical fields of the displacement, the strain, and
the stress can be found in [19].
Accounting for nonlinear material behavior, the polarization state has to be analyzed. Due
to high electric fields, ferroelectric switching processes take place and the material proper-
ties change. To consider the resultant ferroelectric hysteresis phenomena, one can refer to
microscopic models, see References [20, 21], and macroscopic models, see e.g. References
[22, 23, 24, 25, 26, 27, 28]. Microscopic analysis looks at single crystals and models the
switching process via an energy criterion. A macroscopic approach using a switching criterion
based on thermodynamic energy function is presented in [22, 23, 24, 25, 26, 27]. Macro-
scopic phenomenological hysteresis models can be found in Reference [28]. A well known
phenomenological model is the Preisach model, see Reference [47]. Several piezo-mechanical
coupled formulations have used the Preisach model to display piezoelectric material behavior,
see References [30, 31, 32]. A shell element that accounts for material nonlinearities is [33]; it
is based on a phenomenological switching function. In order to consider the nonlinear material
behavior in a classical shell formulation, the strain and the electric field in thickness direction
have to be comprised. A classical mechanical shell element incorporating three dimensional
constitutive equations is e.g. proposed by Reference [34]. The influence of the temperature on
piezoelectric material behavior has been studied experimentally in References [36, 37, 38, 39].
[39] shows that the ferroelectric hysteresis curves become smaller with increasing temperature.
A micropolar model to consider the temperature-dependent relation between the electric field
and the polarization is introduced by [40]. Here, the influence of mechanical stress is neglected
and there is no remark on the strain behavior. A simple one-dimensional phenomenological
model considering the strain is presented in Reference [41]. The authors assume a volume
part of paraelectric phase for every hysteresis. [35] presents a piezoelectric plate element
considering the deformation of a linear temperature gradient through the thickness, and gives
the results depending on the piezoelectric material parameters for different temperature lev-
els. Thus, temperature can influence the performance of piezoelectric shell structures due to
a change of the temperature dependent material parameters. The essentiell aspects of the
piezoelectric shell formulation presented in this paper are the following:

(i) The bilinear, four-node shell element is based on a six field variational functional. Be-
sides the six mechanical degrees of freedom, three displacements and three rotations, the
only electrical degree of freedom is the difference of the electric potential in thickness
direction;

(ii) The element includes nonlinear kinematic assumptions, thus a geometric nonlinear anal-
ysis becomes feasible;

(iii) The formulation incorporates three dimensional transversal isotropic constitutive equa-
tions. In the shell formulation a linear approach for both the strain and the electric
field in thickness direction is considered;

(iv) Using the Preisach model, the material nonlinear ferroelectric hysteresis effects are in-
corporated. Here the change of the saturation parameters of the polarization and the
strain due to temperature is phenomenologically included, thus temperature-dependent
hysteresis curves can be determined.
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2 Kinematics

We model the shell by a reference surface Ω with the boundary Γ. Every point of Ω is part
of the Euklidean space B. In order to display the geometry of the structure in B, we denote
a convected coordinate system of the body ξi and an origin O with the global cartesian
coordinate system ei. The initial thickness of the shell in the reference configuration is given
as h, thus we define the arbitrary reference surface by the thickness coordinate ξ3 = 0 with
h− ≤ ξ3 ≤ h+. X(ξ1, ξ2) and x(ξ1, ξ2) denote the position vectors of the shell surface Ω by
means of the convective coordinates in the reference and the current configuration respectively.
The covariant tangent vectors for the reference and the current configuration, Ai and ai, are
given as

Ai =
∂X

∂ξi
, ai =

∂x

∂ξi
, i = 1, 2, 3 . (1)

The contravariant basis Ai is defined by the orthogonality δj
i = Ai · Aj. The director vector

D(ξ1, ξ2) with |D(ξ1, ξ2)| = 1 is given perpendicular to Ω. It holds D = A3. We obtain the
corresponding inextensible director vector d of the current configuration with the rotation
tensor R by the orthogonal transformation d = RD. In the following, we refer to the notation
that Latin indices range from 1 to 3 and Greek indices range from 1 to 2, whereas we use
the summation convention for repeated indices. Commas denote a partial differentiation with
respect to the coordinates ξα. A displacement u can be determined by the difference of the
current and the initial position vectors u = x − X. Including a Reissner-Mindlin kinematic,
we consider transverse shear strain, thus it holds d · x,α �= 0. For the geometric in-plane and
thickness strains we assume

Eαβ = εαβ + ξ3 καβ

2Eα3 = γα

E33 = 0 .

(2)

We write the membrane strains εαβ, the curvatures καβ , and the shear strains γα of the shell,
see Reference [42], as

εαβ =
1

2
(x,α ·x,β −X,α ·X,β )

καβ =
1

2
(x,α ·d,β +x,β ·d,α −X,α ·D,β −X,β ·D,α )

γα = x,α ·d− X,α ·D .

(3)

The electric field �E =
[
�E1

�E2
�E3

]T
is given as the gradient field of the electric potential

ϕ. Due to the shell geometry, we assume that the piezoelectric material is poled in thickness
direction and the electrodes are arranged at the lower and upper surface. Therefore, we only
consider the difference of the electric potential in thickness direction of the shell Δϕ and write

the geometric electric field �Eg =
[
�E1

�E2 0
]T

as

�Eg = −∂Δϕ

∂ξi
Ai . (4)

We summarize the strains and the electric field of the shell in a generalized geometric strain
vector εg(v)

εg(v) = [ε11, ε22, 2ε12, κ11, κ22, 2κ12, γ1, γ2, �E1, �E2]
T . (5)
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Herein, it holds v = [u, ω, Δϕ]T , with the displacements u, the rotational parameters ω, and
the difference of the electric potential Δϕ.

The components of the Green-Lagrangean strains E = 1
2
(C − 1) as function of the right

Cauchy-Green tensor C = FT F with the deformation gradient F and the electric field are

arranged in the column matrix ε =
[
E11 E22 E33 2E12 2E13 2E23

�E1
�E2

�E3

]T
. The

independent shell vector under consideration of the thickness components of the strain ε33

and the electric field �E3 is given as

ε̄ =
[

ε̃11 ε̃22 2ε̃12 κ̃11 κ̃22 2κ̃12 γ̃1 γ̃2
�̃E1

�̃E2 ε̃0
33 ε̃1

33
�̃E0

3
�̃E1

3

]T

.

Here, ε̃0
33 and ε̃1

33 describe the constant and linear components of the thickness strain, �̃E0
3 and

�̃E1
3 describe the constant and linear part of the electric field. We define the relation between

the Green-Lagrangean strains and the independent shell strains by

ε = Aε̄ , (6)

with

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 ξ3 0 0 0 0 0 0 0 0 0 0
0 1 0 0 ξ3 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 ξ3 0 0
0 0 1 0 0 ξ3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 ξ3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

3 Constitutive equations

We introduce linear constitutive equations with the Green-Lagrangean strain E, the La-
grangean electric field �E, the second Piola-Kirchhoff stresses S, and the dielectric displace-
ments �D. Focusing on our material model, here we neglect thermal stresses and pyroelectric
effects. For a detailed description of thermal effects and its impact on the piezoelectric re-
sponse, as e.q. thermal buckling, see References [6, 43]. We write the simplified constitutive
equation as [

S

−�D

]
︸ ︷︷ ︸

σ

=

[
� −�T

−� −ε

]
︸ ︷︷ ︸

�̄

[
E
�E

]
︸︷︷︸
ε

. (8)

The strains and the electric fields are summarized in the vector ε. The dependent variables of

the stresses and the dielectric displacements are summarized in σ with σ =
[
S11 S22 S33 S12 S13 S23

The three dimensional elasticity matrix �, the permittivity matrix ε, and the piezoelectric
coupling modulus � are arranged in �̄. In �, we assume transversal isotropic material be-
havior with isotropy in the 23-plane, which can be specified with five independent parameters,
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see [44]. The polarization in thickness direction of the structure leads to a piezoelectric mod-
ulus � with three independent coefficients and a permittivity matrix ε with two independent
coefficients.

�
T =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 e13

0 0 e13

0 0 e33

0 0 0
e15 0 0
0 e15 0

⎤
⎥⎥⎥⎥⎥⎥⎦ ε =

⎡
⎣ε11 0 0

0 ε11 0
0 0 ε33

⎤
⎦ (9)

For the shell, we derive the energy function Ws

Ws =

∫
B0

1

2
εT σ dV =

∫
B0

1

2
ε̄TAT σ dV =

∫
Ω

1

2
ε̄T

h+∫
h−

AT σ μ̄dξ3

︸ ︷︷ ︸
S̄

dA . (10)

Here, dV = μ̄dξ3dA with the determinant of the shifter tensor μ̄. We obtain the stress
resultants of the shell S̄ from the thickness integration. Applying the material law, the
material matrix � of the shell arises from

S̄ =

h+∫
h−

AT σ μ̄dξ3 =

h+∫
h−

AT
�̄A μ̄dξ3

︸ ︷︷ ︸
�

ε̄ (11)

For slightly curved shells it holds μ̄ ≈ 1. Regarding layered structures we calculate � as the
sum of the material matrix of every layer k as

� =

n∑
k=1

�k =

n∑
k=1

hk+∫
hk−

AT
�̄kA μ̄dξ3 . (12)

The vector of the stress resultants has the form

S̄ = [n11, n22, n12,m11,m22,m12, q1, q2,−d1,−d2, n33
0 , n33

1 ,−d3
0,−d3

1]
T (13)

with membrane forces nαβ = nβα, bending moments mαβ = mβα, shear forces qα, and dielec-
tric displacements dα. n33

0/1 and d3
0/1 describe the constant and linear part of the components

in thickness direction, respectively. The quantities nαβ and qα are effective stress resultants,
which are related to the integrals of the First Piola-Kirchhoff stress tensor by well known
transformations. It holds nα := nαβ x,β + qα d + mαβ d,β , mα := d × mαβ x,β.
For the vector of the independent stress resultants and the independent dielectric displace-
ments, we assume

ˆ̄S =
[

n11 n22 n12 m1 m2 m12 q1 q2 −d1 −d2 0 0 0 0
]T

=
[

Ŝ 0
]T

. (14)

The stress and dielectric displacement in thickness direction are defined as zero, thus we fulfill
the normal zero stress condition of shells.

5



4 Ferroelectric hysteresis phenomena using the Preisach

model

4.1 Nonlinear constitutive equations

Ferroelectric ceramics show strong nonlinear behavior under high electric fields. The im-
printed initial polarization changes its direction under high electric loading and shows the
dielectric hysteresis. Thus, the linear constitutive behavior according to (8) has to be set up
under consideration of the current state of polarization. This state is characterized by the
irreversible polarization �P i. With the unit vector eP , the irreversible polarization vector �Pi

yields to
�Pi = �P ieP , �P i = �P sat �P i,rel . (15)

�P sat describes the saturation polarization and represents a material parameter. For the quan-
tity of the relativ irreversible polarization �P i,rel, it holds −1 ≤ �P i,rel ≤ 1. �P i,rel characterizes
the part of the piezoelectric material that shows a macroscopic polarization. We write the
constitutive equations dependent of the state of polarization as

S = � : (E −Ei) − �( �Pi) �E

−�D + �Pi = −�T ( �Pi) : (E− Ei) − ε�E .

Since the switching effects of the ferroelectric domains can be treated as a volume conserving
process, the irreversible strain Ei can be determined as proposed by Reference [25].

Ei =
3

2
Esat‖�Pi‖

�P sat
(�eP ⊗ �eP − 1

3
I) (16)

Here, Esat defines the saturation strain of the ferroelectric material. According to Refer-
ence [26], the components of the polarization dependent piezoelectric modulus �( �Pi) can be
calculated by

�kij = ‖�Pi‖
�P sat

{�‖eP
i eP

j eP
k (17)

+�⊥(δij − eP
i eP

j )eP
k (18)

+�=
1

2
[(δki − eP

k eP
i )eP

j + (δkj − eP
k eP

j )eP
i ]} . (19)

�‖, �⊥ und �= correspond to the material parameters �333, �311 and �131 for a completely
poled material. In consideration of the symmetry, the tensor �kij can be transformed into the
piezoelectric modulus �. Due to the isotropy, the elasticity matrix � and the permittivity
matrix ε are independent of the polarization state.

By means of the matrix A, see (7), the polarization vector of the shell �̄Pi reads

�̄Pi =

h+∫
h−

AT

[
0
�Pi

]
dξ3 . (20)
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4.2 General description of the Preisach model

The Preisach model was introduced by F. Preisach [45], in order to analyze nonlinear behavior
of ferromagnetic material. As a general mathematical model, it is able to describe various
hysteresis curves of a wide range of different applications. For piezoelectric material behavior,
the model was validated by Reference [46]. The basic idea of the Preisach model is that
every hysteresis curve can be determined by an infinite number of unit hysteresis operators,
see Figure 1, via superposition. These operators connect every input value x(t) with an

x t( )

R��

��

1

-1

EDF

CBA

Figure 1: Unit hysteresis for the Preisach model.

output value Rαβ(x(t)), which can be +1 or −1. For a monotone increasing input value, the
curve passes through ABCDE. In the case of a monotone decreasing value, it passes through
EDFBA. For the specific up and down switching values α and β, it holds β ≥ α. The global
output value y(t) is obtained by superposition as

y(t) =

∫
α

∫
β

μ(α, β) Rαβ(x(t)) dα dβ . (21)

Here, μ(α, β) denotes the Preisach function, which represents a weighting function for each
single hysteresis curve. For μ(α, β) it is assumed∫

α

∫
β

μ(α, β) dα dβ = 1 . (22)

The constraint in (22) leads to the definition of the saturation value. The positive saturation
of y(t) is given as y+, if all operators hold Rαβ(x) = +1. Vice versa for Rαβ(x) = −1 the
negative saturation y− is achieved with y+ = −y−.
A geometrical interpretation of the constraint β ≥ α leads to a half plane T with the boundary
line β = α. Herein, each elementary hysteresis marks a point with (α, β). The pair of
values (α0, β0), with α0 and β0 as the minimal and maximal switching values of α and β,
respectively, reduce the half plane to a triangle, which is also called Preisach triangle. We
assume that outside the triangle, the Preisach function vanishes, so it holds μ = 0 for (α, β) /∈
T . Considering the loading history, that is the time variable input value, see Figure 2, the
Preisach triangle can be partitioned, and we distinguish between S+ as the intersection of
all points where Rαβ(x) = +1, and S− where Rαβ(x) = −1. Giving an initial configuration
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Figure 2: Preisach model.

�

�
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�

�

��� 1
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�

�
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�

�

� 2x � 4x � 6x

� 1x
� 3x
� 5x

Figure 3: Preisach model.

with all operators count −1, the whole triangle is S−. Increasing the input variable, some
operators change to +1 and a partition S+ arises, which is separated to S− by a line β = βs

parallel to the α axis, see Figure 3, until the local maximum β = βx1 is reached. Decreasing
input values lead to a vertical line with α = αs until the local minimum α = αx2 comes
up. Therefore, a loading history of local maxima and minima, as depicted in Figure 2, with
βx1 > βx3 > βx5 and αx2 < αx4 < αx6 respectively leads to a staircase function as shown in
Figure 3. By means of the partitioned Preisach triangle, equation (21) can be written as

y(t) =

∫∫
S+(t)

μ(α, β) dα dβ −
∫∫

S−(t)

μ(α, β) dα dβ . (23)

Thus, the Preisach model permits to depict the loading history including subhysteresis curves,
which is an essentiell advantage compared to other models. For a detailed description see e.g.
Reference [47].

4.3 Interpretation for ferroelectric materials

To interpret the Preisach model for ferroelectric hysteresis phenomena, the input and output
variables have to be identified. The loading parameter for piezoelectric devices is the electric
field �E. With the parameter of the material specific saturation value of the electric field �Esat
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the normalized value �Erel is chosen as

x(t) = �Erel =
‖�E‖
�Esat

. (24)

The corresponding output quantity is chosen as the normalized polarization �P i,rel

y(t) = �P i,rel =
‖�Pi‖
�P sat

(25)

with the material parameter of the saturation polarization �P sat. As a phenomenological
model, the Preisach concept adjusts the final hysteresis form by means of an experimental
determined function. According to Reference [48] we choose the weighting function μ

μ = c · e−fα(α−β−yα+yβ)2−fβ(α+β−yα−yβ)2 . (26)

The parameters c, fα, fβ, yα, and yβ are set up from experimental data. For a detailed
description and a discussion regarding the choice of the Preisach function see e.g. References
[49, 50, 47, 51]. It is remarked that the polarization output value denotes the normalized
irreversible polarization. Therefore, it results a horizontal line of the hysteresis function above
the saturation. Actually the reversible polarization has to be added, which holds according
to Reference [26]

�Pr = κ�E + � : S . (27)

κ represents the susceptibility and � the piezoelectric coupling module with � = �−1
�.

4.4 Temperature-dependent hysteresis

The influence of the temperature on the saturation parameter of the polarization P sat and the
electric coercitive field Ec has been experimentally studied by Reference [37] for Pb(Zn1/3Nb2/3)O3−
PbT iO3 single crystals and by Reference [38] for PZT ceramics. With increasing tempera-
ture, the domain walls start moving earlier and the hysteresis area decreases. Following the
experimental investigations in Reference [39] we assume a linear relation between the natural
logarithms of the temperature and the saturation polarization. With the experimental data
from [38] for the material PZT we include the phenomenological saturation parameter

P sat = exp (10.305 T−1.2322 [K]) . (28)

Note that the temperature in this equation is of unit Kelvin. We assume that also the
saturation strain depends on the temperature. As there do not exist sufficient test results,
this influence has been neglected.
Based on Reference [38] we include the relation

Ec = −0.03085 T [K] + 18.319 (29)

for the coercitive field. For the numerical investigation, we assume that the temperature
remains under the Curie temperature, where the polarization vanishes with the transition to
the paraelectric phase.
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5 Variational formulation

The variation of the generalized geometric vector δεg can be written as δεg = [δε11, δε22, 2δε12, δκ11, δκ22, 2δκ
with

δεαβ =
1

2
(δx,α ·x,β +δx,β ·x,α )

δκαβ =
1

2
(δx,α ·d,β +δx,β ·d,α +δd,α ·x,β +δd,β ·x,α )

δγα = δx,α ·d + δd · x,α

δ �Eα = −δ(Δϕ),α

(30)

Referring to (6), it holds δε = Aδε̄. We postulate the existence of the strain energy function
Ŵ (C) and write the internal virtual work of the shell as

δWi =

∫
Ω

∫
h

δŴ (C)μ̄ dξ3 dA =

∫
Ω

δεT ∂εW dA . (31)

Here, dA = jdξ1dξ2 is the area element with j(ξ, η) = |Xh,ξ ×Xh,η |. Considering δŴ (C) =

2δε : ∂CŴ (C) = (Aδε) : 2∂CŴ (C), we obtain the vector of the stress resultants

∂εW =

h+∫
h−

AT σμ̄ dξ3 . (32)

The generalized stress tensor σ containing the second Piola-Kirchhoff stresses reads σ =
2∂CŴ (C). In the following, we summarize the static and geometric field equations as well as
the constitutive equations in Ω

1

j
(jnα),α + b̄ = 0 εg − ε̂ = 0 (33)

1

j
(jmα),α + x × nα = 0 ∂ˆ̄ε

W − ˆ̄S = 0 . (34)

b̄ represents the surface loads on Ω. Displacements u, rotations ω and an electric potential Δϕ
summarized in the vector v = [u, ω, Δϕ]T can be prescribed on Γu by v̄, where Γ = Γσ

⋃
Γu.

With the boundary loads t̄ on Γσ, the static and geometric boundary conditions read

j(nανα) − t̄ = 0 on Γσ (35)

v − v̄ = 0 on Γu . (36)

να denotes the components of the normal vector on the shell boundary. The virtual quantities
of v and the independently assumed strains, electric field, stresses, and dielectric displace-

ments summarized in the generalized electromechanic fields ε̂(Ê, �̂E) and σ̂(Ŝ, �̂D) arrive to

δv(δu, δω, δΔϕ), δε̂(δÊ, δ�̂E) and δσ̂(δŜ, δ �̂D).
We introduce θ[v, ε̂, σ̂]T with δθ[δv, δε̂, δσ̂]T and formulate the weak form of the boundary
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value problem in the standard way

G(θ, δθ) =

∫
Ω

[
δˆ̄εT (∂ˆ̄εW − ˆ̄S) + δŜT (εg − ε̂)

]
dA

−
∫
Ω

[(
1

j
(jnα),α + b̄

)
· δv +

(
1

j
(jmα),α + x × nα

)
· δω

]
dA = 0 .

(37)

Integration by parts of the second integral and the incorporation of the static boundary
conditions yields

G(θ, δθ) =

∫
Ω

[
δˆ̄εT (∂ˆ̄εW − ˆ̄S) + δŜT (εg − ε̂) + δεT

g Ŝ
]

dA

−
∫
Ω

δvT b̄ dA −
∫
Γσ

δvT t̄ ds = 0 . (38)

6 Finite element approximation

The finite element formulation models the shell structure by a reference surface. We choose
a four node element with bilinear shape functions NI

NI(ξ, η) =
1

4
(1 + ξIξ)(1 + ηIη) I = 1..4 . (39)

Regarding the geometry, we approximate the position vector and the director vector by

Xh =
4∑

I=1

NI XI Dh =
4∑

I=1

NI DI . (40)

The local numbering of the nodes and the midside points are shown in Figure 4. The coordi-
nates {ξ, η} ∈ [−1, 1] are mapped from the unit square on the reference surface in the reference
and the current configuration. It holds ξI ∈ {−1, 1, 1,−1} and ηI ∈ {−1,−1, 1, 1}.
The superscript h denotes the characteristic size of the element discretisation and indicates
the finite element approximation. The nodal position vector XI and the local cartesian co-
ordinate system [A1I ,A2I ,A3I ] are generated with the mesh input. Here DI = A3I is set
perpendicular to the surface Ω and A1I , A2I are built fulfilling the boundary conditions. It
should be remarked that the orthogonality holds true only for the nodal points. For every
element we calculate a local cartesian basis system ti according to Reference [52]. Here, t3

represents the normal vector in the midpoint of the element. t1 and t2 span the tangent plane
in the element midpoint. The reference surface in the current configuration is approximated
by the position vector xh and the director vector dh with

xh =

4∑
I=1

NI xI dh =

4∑
I=1

NI dI . (41)

11



�

X

X
X

surface

p

�

X1

X
2

X
3

h
reference surface

1

4 3

2

A

B

C

D

Figure 4: Four node shell element.

For every node xI = XI + uI characterizes the position vector in the current configuration
and we obtain dI = a3I by the orthogonal transformation akI = RI AkI with k = 1, 2, 3.
The rotational parameters ωkI are arranged in the vector ωI = [ω1I , ω2I , ω3I ]

T . The rotation
tensor RI as a function of the parameters ωkI is calculated via the Rodrigues’ formula

RI = 1 +
sin ωI

ωI
ΩI +

1 − cos ωI

ω2
I

Ω2
I ΩI = skew ωI =

⎡
⎢⎣

0 −ω3I ω2I

ω3I 0 −ω1I

−ω2I ω1I 0

⎤
⎥⎦ . (42)

Equation (42) is free of singularities for ωI = |ωI | < 2π, which is always fulfilled if a multi-
plicative update of the total rotation tensor is applied after a certain number of load steps.
We assume that the shell structure only counts for an electric potential in thickness direction
of the shell by means of electrodes on the upper and lower surface of the shell. With an initial
polarization of the piezoelectric material in thickness direction, the difference of the electric
potential in thickness direction Δϕ is assumed to be the only electrical degree of freedom at
each element node. Thus, the nodal degrees of freedom are three local displacements, three
local rotations, and the difference of the electric potential. By means of the isoparametric
concept, the geometry as well as the displacements uh and the electric potential Δϕh are
approximated on element level by the same shape functions NI .

uh =

4∑
I=1

NI uI Δϕh =

4∑
I=1

NI ΔϕI (43)

Summarizing (43) we write[
uh

Δϕh

]
=

4∑
I=1

NI vI = N ve with vT
e = [vT

1 vT
2 vT

3 vT
4 ] (44)

and vI = (u1 u2 u3 ω1 ω2 ω3 Δϕ)I . We approximate the generalized variational vector
of the geometric strain and the geometric electric field δεg by means of the matrix B

δεg =

4∑
I=1

BI δvI = B δve . (45)

The element has to fulfill the patch tests. In order to fulfill the bending patch test, the
shear strains based on linear displacement interpolations in (3)3 has to be substituted by the
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strains defined in Reference [53] to avoid shear locking phenomena. Thus, we formulate the
approximation of the shell strains as

εh
g =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εh
11

εh
22

2εh
12

κh
11

κh
22

2κh
12

γh
1

γh
2

�E1

�E2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
(xh,1 ·xh,1 −Xh,1 ·Xh,1 )

1
2
(xh,2 ·xh,2 −Xh,2 ·Xh,2 )

xh,1 ·xh,2 −Xh,1 ·Xh,2

xh,1 ·dh,1 −Xh,1 ·Dh,1

xh,2 ·dh,2 −Xh,2 ·Dh,2

xh,1 ·dh,2 +xh,2 ·dh,1 −Xh,1 ·Dh,2 −Xh,2 ·Dh,1

J−1

{
1
2
[(1 − η) γB

ξ + (1 + η) γD
ξ

1
2
[(1 − ξ) γA

η + (1 + ξ) γC
η ]

}

J−1 · N �E

{
Δϕ

Δϕ

}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(46)

with N �E =
[
N,ξ N,η

]T
. J here denotes the Jacobian matrix. The strains referring to the

midside nodes A, B, C, D of the element read

γM
ξ = [x,ξ ·d− X,ξ ·D]M M = B, D

γL
η = [x,η ·d −X,η ·D]L L = A, C .

(47)

For a detailed description of the derivatives of the position and director vectors see Reference
[55].

6.1 Interpolation of the assumed strains and electric field

The independent fields of the strains and the electric field are interpolated by

ˆ̄ε = N̄ε ᾱ, ε̂ = N̂ε α (48)

Here ˆ̄ε characterizes the complete vector of the assumed strains and the assumed electric
fields, whereas ε̂ specifies the reduced vector without the components in thickness direction.
ᾱ and α contain independent variables, which can be eliminated by static condensation on
element level. We define the matrices N̄ε and N̂ε as

13



N̂ε =

[
Nε 0
0 Nel

ε

]

N̄ε =

⎡
⎣ N̂ε 0 0 Neas

0 Nz
ε 0 0

0 0 Ñel
ε 0

⎤
⎦

Nε =

⎡
⎣ 13 0 0 Nm

ε 0 0
0 13 0 0 Nb

ε 0
0 0 12 0 0 Ns

ε

⎤
⎦

Nel
ε = J

[
1 0 η̃ 0
0 1 0 ξ̃

]

Nz
ε =

[
1 0 ξ̃ η̃ ξ̃ · η̃ 0 0 0
0 1 0 0 0 ξ̃ η̃ ξ̃ · η̃

]

Ñel
ε = J

[
1 0 ξ̃ η̃ ξ̃ · η̃ 0 0 0
0 1 0 0 0 ξ̃ η̃ ξ̃ · η̃

]
.

(49)

It holds ξ̃ = ξ − ξ̄ and η̃ = η − η̄. Due to the constants ξ̄ and η̄

ξ̄ =
1

Ae

∫
Ωe

ξ dA η̄ =
1

Ae

∫
Ωe

η dA Ae =

∫
Ωe

dA (50)

the orthogonality between the linear and the constant functions is given, which yields partly
decoupled matrices. The area element dA = j dξdη is given with j(ξ, η) = |Xh,ξ ×Xh,η |.
The matrix Neas contains parameters that are set orthogonal to the interpolations of the
stresses, which is similar to the enhanced strain formulation given by Reference [54]. We
define Neas as

Neas =

[
Nm

eas 0
0 Nb

eas

]
Nm

eas = Nb
eas = j0

j
(T0

σ)−TMα

Mα =

⎡
⎣ ξ 0 ξη 0 0 0 0

0 η 0 ξη 0 0 0
0 0 0 0 ξ η ξη

⎤
⎦ α = 2, 4, 7 .

(51)

The matrix T0
σ is specified in (56). According to Reference [55], the matrices Nm

ε , Nb
ε und

Ns
ε are defined as

Nm
ε = Nb

ε = T0
ε

⎡
⎢⎢⎣

η̃ 0

0 ξ̃

0 0

⎤
⎥⎥⎦ , T0

ε =

⎡
⎢⎣

J0
11J

0
11 J0

21J
0
21 J0

11J
0
21

J0
12J

0
12 J0

22J
0
22 J0

12J
0
22

2J0
11J

0
12 2J0

21J
0
22 J0

11J
0
22 + J0

12J
0
21

⎤
⎥⎦ (52)

Ns
ε = T̃0

ε

⎡
⎣ η̃ 0

0 ξ̃

⎤
⎦ , T̃0

ε =

⎡
⎣ J0

11 J0
21

J0
12 J0

22

⎤
⎦ . (53)

The transformation of the contravariant tensor components into a cartesian coordinate system
related to the element center is described by T0

ε and T̃0
ε. The constants J0

αβ = Jαβ(ξ = 0, η =
0) are the components of the Jacobian matrix J evaluated in the element center.
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6.2 Interpolation of the assumed stresses and dielectric displace-

ments

The vector of the independent stress resultants and the independent dielectric displacements
without the components in thickness direction Ŝ is given as

Ŝ = Nσ β (54)

with the vector β containing independent variables. The matrix Nσ is defined as

Nσ =

[
Nmech

σ 0
0 Nel

σ

] Nmech
σ =

⎡
⎣ 13 0 0 Nm

σ 0 0
0 13 0 0 Nb

σ 0
0 0 12 0 0 Ns

σ

⎤
⎦

Nel
σ = Nel

ε (55)

with the matrices

Nm
σ = Nb

σ = T0
σ

⎡
⎢⎢⎣

η̃ 0

0 ξ̃

0 0

⎤
⎥⎥⎦ , T0

σ =

⎡
⎢⎣

J0
11J

0
11 J0

21J
0
21 2J0

11J
0
21

J0
12J

0
12 J0

22J
0
22 2J0

12J
0
22

J0
11J

0
12 J0

21J
0
22 J0

11J
0
22 + J0

12J
0
21

⎤
⎥⎦ (56)

Ns
σ = Ns

ε . (57)

The interpolation of the membrane and bending strains corresponds to the procedure intro-
duced by Reference [56]. For ξ̄ = η̄ = 0, the plane strain problem according to Reference [57]
is solved.

6.3 Approximation of the weak form and linearization

According to equation (38) the approximation of the variational formulation reads

G(θ, δθ) =

∫
Ω

[
δεT

g Ŝ− δvT b̄
]

dA −
∫
Γσ

δvT t̄ ds

+

∫
Ω

δ ˆ̄ε
T
(∂ˆ̄εW − ˆ̄S) dA

+

∫
Ω

δŜT (εg − ε̂) dA = 0 (58)

including the variational quantities of the assumed strains and the assumed electric field with
and without the thickness components δ ˆ̄ε and δε̂, respectively, as well as the variational tensor
of the stress resultants and the dielectric displacement δŜ. For these variational components,
it holds

δ ˆ̄ε = N̄ε δᾱe δε̂ = N̂ε δαe δŜ = Nσ δβe . (59)
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We incorporate the interpolations of the strains, the electric fields, the stress resultants,
and the dielectric displacements in equation (58) and formulate the approximation of the
variational formulation on element level as

G(θ, δθ) = δvT
e

∫
Ωe

[
BTNσ β − fa

]
dA

+ δᾱT
e

∫
Ωe

[
N̄T

ε ∂ˆ̄εW
]

dA − δαT
e

∫
Ωe

[
N̂T

ε Nσ β
]

dA

+ δβT
e

∫
Ωe

[
NT

σ εg −NT
σ N̂ε α

]
dA . (60)

The external loads are summarized in fa. Considering nonlinear structural and material
behavior, this formulation has to be linearized. With the material matrix �

� := ∂2
ˆ̄ε
W =

h+∫
h−

AT4
∂2Ŵ (C)

∂C ∂C
A μ̄ dξ3 (61)

the linearized variational formulation is given by

L [G(θ, δθ), Δθ] := G(θ, δθ) + D G · Δθ = 0

D G · Δθ =

∫
Ωe

[δεT
g ΔŜ + δΔεT

g Ŝ + δ ˆ̄ε
T
(�Δˆ̄ε + Δ�Pi − Δ ˆ̄S) + δŜ

T
(Δεg − Δε̂)] dA .

(62)
The integration over the thickness in (61) is numerically solved by the sum over all layers,
with two Gauss integration points for each layer. The irreversible polarization is a function
of the electric field. The linearized part of the polarization Δ�Pi yields

Δ�Pi =
∂�Pi

∂�E
Δ�E . (63)

The partial derivative of the irreversible polarization with respect to the electric field can be
interpreted as an additional portion of the electrical permittivity

εP =
∂�Pi

∂�E
. (64)

Thus, the polarization vector in the constitutive equations can be substituted for the addi-
tional permittivity part Δ�Pi = εP Δ�E, which we consider in the material matrix �̂. Inserting
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all interpolations, we introduce the linearized finite element approximation

L [G(θ, δθ), Δθ] = δvT
e

∫
Ωe

[
kσ Δv + BTNσ Δβ + BT Ŝ + f i − fa

]
dA

+ δᾱT

∫
Ωe

[
N̄T

ε �̂N̄ε ᾱ + N̄T
ε �̂N̄ε Δᾱ

]
dA

− δᾱT

∫
Ωe

[
N̂T

ε Nσ Δβ + N̂T
ε Nσ β + fe

]
dA

+ δβT

∫
Ωe

[
NT

σB Δv −NT
σ N̂ε Δα + NT

σ εg −NT
σ N̂εα + fs

]
dA .

(65)

We simplify the formulation and define the following element matrices

kg[18×18] =

∫
Ωe

kσ dA f i
[18] =

∫
Ωe

BT Ŝ
h

dA = GT β

H̄[34×34] =

∫
Ωe

N̄T
ε �̂ N̄ε dA fe

[34] =

∫
Ωe

N̄T
ε ∂εW dA − Fβ =

[
fe
1 [18]

fe
2 [16]

]

F[18×18] =

∫
Ωe

N̂T
ε Nσ dA fs

[18] =

∫
Ωe

NT
σ εh

g dA − FT α .

G[18×18] =

∫
Ωe

NT
σ B dA

(66)
We solve the integrals in (50) and (66) numerically with a 2× 2 Gauss scheme. By means of
the element matrices, the linearized variational formulation of equation (65) can be simplified
as

L [G(θ, δθ), Δθ] = δvT
e

[
kg Δv + GT Δβ + f i − fa

]
+ δᾱT

[
H̄ Δᾱ

] − δᾱT [FΔβ + fe]

+ δβT
[
G Δv − FT Δα + fs

]
. (67)

The element matrix H̄ can be partitioned into four submatrices H,Hmz,Hzm, and Hzz, thus
the thickness components of the shell are separated, as

H̄ =

∫
Ωe

N̄T
ε �̂N̄ε dA =

∫
Ωe

⎡
⎣ N̂ε 0 0

0 Nz
ε 0

0 0 Ñel
ε

⎤
⎦

T

�

⎡
⎣ N̂ε 0 0

0 Nz
ε 0

0 0 Ñel
ε

⎤
⎦ dA

=

[
H(18×18) Hmz(18×16)

Hzm(16×18) Hzz(16×16)

]
(68)
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Including the four matrices into the variational formulation, it follows

L [G(θ, δθ), Δθ] = δvT
e

[
kg Δv + GT Δβ + f i − fa

]
(69)

+ δαT
[
H Δα + Hmz ΔαT

33 − F Δβ + fe
]

(70)

+ δα33 [ Hzm Δα + Hzz Δα33 ] (71)

+ δβT
[
GT Δv − FT Δα + fs

]
. (72)

Continuity is not required for α, α33 and β between the elements. Thus, equations (70) -
(72) can be set to zero. We solve the system of equations under static condensation of Δα33

as
H̃Δα − F1Δβ + f̄e = 0 H̃ = H −Hmz H−1

zz Hzm

Δα33 = H−1
zz (−fe

2 −Hzm Δα) f̄e = fe
1 − HmzH

−1
zz fe

2 .
(73)

For Δα and Δβ it holds
Δα = F−T

1 (GΔv + fs)

Δβ = F−1
1 (H̃Δα + f̄e) .

(74)

Inserting (74) in (69), we obtain the tangential stiffness matrix ke
T and the residual vector f̂

on element level. Hence, equation (69) reads

L [G(θh, δθh), Δθh] = δvT (ke
T Δv + f̂) = 0

ke
T = GT ĤG + kg Ĥ = F−1

1 H̃F−T
1

f̂ = GT (β + Ĥ fs + F−1
1 f̄e) − fa .

(75)

After assembling all elements the problem

KT V = F̂ with KT =

numel⋃
e=1

ke
T ; V =

numel⋃
e=1

ve; F̂ =

numel⋃
e=1

f̂e (76)

is solved with respect to the nodal degrees of freedom.

6.4 Actuator formulation

In order to deal with the actuator use of piezoelectric shell structures, we postulate a linear
distribution of the electric potential in thickness direction. Thus, a value is assigned to the
nodal degree of freedom Δϕ. We write the corresponding electric field in thickness direction
as the average value for every element. According to the gradient relation, see equation (4),
the electric potential is divided through the thickness.

�Ee
3 = −1

4

4∑
I=1

ΔϕI

h
(77)

Hereby, an input variable for the electric field is given and the corresponding parameter of
α33 is defined. The reduced system of equations according to (69-72) is given as

L =

⎡
⎣ δv

δα
δβ

⎤
⎦T

e

⎧⎨
⎩

⎡
⎣ kg 0 GT

0 H −F
G −FT 0

⎤
⎦

⎡
⎣ Δv

Δα
Δβ

⎤
⎦ +

⎡
⎣ 0

Hzm

0

⎤
⎦ Δα33 +

⎡
⎣ f i − fa

fe

fs

⎤
⎦
⎫⎬
⎭

e

. (78)
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7 Numerical examples

7.1 Patchtests

The basic benchmark test of a finite element formulation is the well known patch test. The
test is passed if the formulation is able to display a state of constant stresses and constant
dielectric displacements along with constant strains and a constant electric field for distributed
element geometry. Here, we extend the mechanical patch test according to Reference [53]
to the electro-mechanically coupled problem. The geometry of the quadratic patch with
distorted elements inside the patch is shown in Figure 5. The material parameters are given
as the Young’s modulus E = 67 · 103 MN

m2 , the Poisson’s ratio ν = 0, the parameter of the

F1

F1

M1

M1

membrane test:

F
node 7/8
1 = 6 · 10−2MN

vnode 1
1 = 0, vnode 2

1−7 = 0

bending test:

M
node 7/8
1 = 1 · 10−3MNm

v
node 1/2
1−3; 5−7 = 0

shear test:

F
node 7/8
3 = 6 · 10−2MN

v
node 1/2
1−7 = 0, vnode 3−8

1; 2; 4−6 = 0

Figure 5: FE mesh, loading and boundary conditions of the patch test

piezoelectric coupling modulus e13 = 9.3 C
m2 , e15 = 14.6 C

m2 and the dielectric permittivity

matrix ε11 = ε33 = 15.3 · 10−3 C2

MNm2 . The thickness is t = 1m. For the membrane test we
subject nodes seven and eight to the load F1 in 1-direction. For the bending test, the moment
M1 around the 2-direction is applied on nodes seven and eight. For the shear test the same
nodes are subjected to load F3 in 3-direction. The loadings and the boundary conditions are
depicted in Figure 5. The numerical results show that the formulation is able to describe the
constant stress states, linear displacement distributions, and the corresponding strain and the
electric field states. The numerical results are given in Table 1. The results are compared to
the analytical solutions which arise from solving the coupled constitutive equations

S11 = E ε11 − �13
�E3 S13 = G γ1

5
6

+ �15
�E1

0 = �13 ε11 + ε33
�E3

�D1 = �15 γ1 + ε11
�E1 .

(79)

7.2 Piezoelectric bimorph

The piezoelectric bimorph is a well known piezoelectric benchmark test in order to proof
the numerical formulation to the general applicability for sensor and actuator systems. The
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Membrane test S11[
MN
m2 ] �Em

3 [ V
m

] unode7/8

1 [m]

Numerical solution 1.2 · 10−2 −1.004 · 10−4 1.652 · 10−6

Analytical solution 1.2 · 10−2 −1.004 · 10−4 1.652 · 10−6

Bending test M11[MNm] �Eb
3[

V
m

] unode7/8

3 [m] unode7/8

5 [m]

Numerical solution 2.0 · 10−4 −2.008 · 10−5 1.652 · 10−6 3.303 · 10−7

Analytical solution 2.0 · 10−4 −2.008 · 10−5 1.652 · 10−6 3.303 · 10−7

Shear test Q13[MNm] �E1[
V
m

] unode7/8

3 [m] Δϕnode7/8

Numerical solution 1.2 · 10−2 −2.736 · 10−4 2.867 · 10−6 2.736 · 10−3

Analytical solution 1.2 · 10−2 −2.736 · 10−4 2.867 · 10−6 2.736 · 10−3

Table 1: Numerical and analytical results of the patch tests

L

b
h

Polarization

�	 w

Geometry:

L = 0.1m

b = 5 · 10−3m

h = 2 × 5 · 10−4m

w = 0.01m

Material data:

E = 2 · 109 N
m2

ν = 0.29

e13 = −4.6 · 10−2 C
m2

ε33 = 1.062 · 10−10 C2

Nm2

Figure 6: Geometry and material parameters of the piezoelectric bimorph.

cantilever consists of two piezoelectric PVDF layers poled in opposite direction and was
introduced by Tzou and Tseng [58]. Since then, the test has been numerously used, e.g. by
Hwang and Park [59] and by Chee et al. [60]. The system is shown in Figure 6. For the
discretisation, five elements are chosen, which correspond to five pairs of electrodes that are
put along the length of the cantilever. The geometry parameter with the length L, the width
b, and the total thickness h as well as the material data are summarized in Figure 6. For the
sensor test the bimorph is loaded by a prescribed displacement w. Due to the deflection, an
electric potential arises. With the assumption that the potential is measured by means of five
pairs of electrodes, we get a staircase function along the length of the cantilever. The results
are given in Figure 7(a) and are compared with other piezoelectric finite element formulations
from the literature. Whereas [59] also shows a staircase function for a layered plate element
and a shallow shell element, [60] and [58] give a linear distribution for a beam element and
for a plate/shell element respectively. The linear distribution here results from the disregard
of the electrodes and just represents the continuous material curve.
For the actuator test the structure is subjected to an electric potential Δϕ = 5 · 10−4 V
that brings about an electric field �E = 1 V

m
. Due to the opposite polarization of the layers

the upper layer shortens and the lower layer elongates. The resultant deflection is depicted
in Figure 7(b). The bimorph has a tip deflection of w = 3.45μm, which corresponds to the
solution of an analytical calculation with a Bernoulli beam, see Tzou [61].
In order to analyze the influence of mesh distortion, the finite element mesh of the bimorph
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Figure 7: Distribution of the electric potential along the bimorph structure for sensor usage
(a) and deflection of the bimorph due to actuator loading (b).
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Figure 8: System and resluts for the bimorph with distorted mesh.

is modified according to Sze und Pan [62]. The initial configuration has four rectangular
elements. Then the nodes become disarranged by the parameter s, see Figure 8. The bimorph
is subjected to an electrical field 1 V

m
again. The tip deflection, normalized on the analytical

solution w0 = 3.45μm, is depicted in Figure 8, dependent on the distortion parameter s.
We compare the results with the data given by Sze and Pan [62] and by Sze and Ghali
[63] for the mixed hexahedral elements (H8D and H8DS) and (H8DS*), respectively. Here
the elements ”H8D” and ”H8DS” vary in the number of independent variables. The element
”H8D” has independent variables for the displacement, the electric potential and the dielectric
displacements, in ”H8DS” also the stresses are included. But the results can hardly be
improved. Good results are obtained by the element ”H8DS*” of Sze and Ghali [63], which
decreases the impact of shear locking effect by selective scaling technique. The present shell
element does not show any shear locking, thus the results fit the analytical solution even for
strong distorted meshes.
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Geometry PZT ceramic
R = 0.2m E1 = E2 = 81.3.0 · 109 N

m2

b = 0.2m E3 = 64.5 · 109 N
m2

h = 2 · 10−3m G12 = 30.6 · 109 N
m2

hPZT = 0.5 · 10−3m G23 = 25.6 · 109 N
m2

hGraphitEpoxid = 4 × 0.375 · 10−3m ν12 = 0.33
Graphite Epoxy ν13 = ν23 = 0.43
E1 = 132.4 · 109 N

m2 e13 = −14.8 C
m2

E2 = E3 = 10.8 · 109 N
m2 e15 = 12.67 C

m2

G12 = G13 = 5.6 · 109 N
m2 ε11 = 13.054 · 10−9 C2

Nm2

G23 = 3.6 · 109 N
m2 ε33 = 11.505 · 10−9 C2

Nm2

ν12 = ν21 = 0.24 ; ν23 = 0.49

Table 2: Geometry and material parameters for the 90◦ cylindrical shell.

7.3 90◦ cylindrical shell

We choose a 90◦ cylindrical shell in order to analyze layered shell structures. The system,
see Figure 9, consists of four graphite epoxy layers, for which we account the orientation
angles ϕF with [0/90/90/0] referring to the x axis. The lower surface is bordered by a
piezoelectric PZT layer. The geometry and the material parameters for the graphite epoxy

x y
z

Graphite Epoxy

Figure 9: Layered 90◦ cylindrical shell.

and PZT layers according to Balamurugan and Narayanan [64] are given in Table 2. The
system is simply supported at the rectilinear edges and is modeled by 15 × 4 elements with
15 elements in circumference direction and 4 elements for the width b. The ratio of the
radius R of the middle surface to the thickness h is given by R/h = 100. The piezoelectric

layer works as actuator and is subjected to an electric field of �E = −400V/mm. The radial
system displacement w is measured along the centerline at b/2. The results, normalized by
the thickness h, are depicted in Figure 10 dependent on the normalized radius R between 0◦

and 90◦ of the cylinder segment. We compare the present shell formulation with data from
Balamurugan and Narayanan [64] for a degenerated nine-node quadrilateral shell element with
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Figure 10: Normalized radial displacement of the 90◦ cylindrical shell at x = b/2.

quadratic approach for the electric potential in thickness direction and with Saravanos [65]
who provides a laminated eight-node shell element with lineare electric thickness potential.
The good accordance of the results shows the reliable applicability of the present laminated
four node formulation for layered piezo-mechanical structures.

7.4 Steering of an antenna

In this example, we show two versions of an antenna that can be manipulated via piezoelectric
devices. We analyze both a spherical antenna with two piezoelectric patches at the lower
surface according to experimental studies by Gupta et al. [66, 67] and a parabolic antenna

F,w

2°

2


RR

F,w

z

b

l
a

l
a

6 mm

Figure 11: Geometry of the antenna.

with four isochronously arranged piezoelectric segments. First, we consider an aluminium
antenna as part of a spherical shell, see Figure 11, with a radius R and an aperture angle 2θ.
Two piezoelectric patches with the width b and the length l are arranged with the distance
a from the small hole of 2◦ in the middle of the antenna shell. The geometry and material
data are summarized in Table 3. We completed missing material parameters, marked by ()∗,
with empirical data of similar material behavior. For the finite element model the rectangular
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Geometry Piezo patches Aluminium shell

R = 0.203m E = 66.0 · 109 N
m2 E = 53.0 · 109 N

m2

θ = 45 ν = 0.178 ν = 0.3
a = 0.05m e13 = −5.6 C

m2

tshell = 0.36 · 10−3m e33 = 17.3 C
m2

tpatch = 0.267 · 10−3m e∗15 = 13.0 C
m2

b = 23.8 · 10−3m ε∗11 = ε∗33 = 1.53 · 10−8 C2

Nm2

l = 36.0 · 10−3m

Table 3: Geometry and material parameter of the antenna with piezoelectric patches.

piezoelectric patches are adapted to the finite element mesh. For this we retain the area of
the patches unchanged and the center of gravity stay the same for both the initial and the
adjusted trapezoidal geometry of the patches. The width of the patches is characterized by
an angle of 22.5◦. The patches range from 13.375◦ from the center point of the antenna to
25.0625◦. For the boundary conditions we assume that the displacement in z-direction at the
nodes of the inner hole are fixed. With respect to the symmetric system, we model only half
of the structure by 32x64 elements.

Case I: Mechanical loading
We subject the antenna in z-direction to a point load F , which affects the antenna in the
symmetry plane through the piezo patches 6mm under the top edge. The resultant displace-
ment w of the loading point in z-direction is presented in Table 4. We compare those results
to the experimental data and a numerical calculation with a reduced eight-node element by
Gupta et al. [67].

Load F [N] Experiment [mm] Gupta [mm] present [mm]

0.02 0.194 0.1852 0.191
0.05 0.475 0.4630 0.477
0.07 0.663 0.6482 0.668
0.1 0.959 0.9260 0.954
0.12 1.165 1.1112 1.145
0.15 1.466 1.3890 1.431

Table 4: Displacement w of the antenna due to the load F.

Case II: Symmetric actuator loading
In order to manipulate the range of the antenna, we connect a voltage to the patches. As
a result from the electric loading, a deflection occurs. The load-deflection curve is shown
in Figure 12(a) for an electric potential of 0 to 100 Volt, which is simultaneously connected
to both patches. The resultant displacement w is measured as in case I in the symmetry
plane 6mm under the top edge. As depicted in Figure 12(a), the numerical results and the
experimental data are close together.

Fall III: Asymmetric actuator loading
To change the range asymmetrically, the patches are subjected to different electric voltages.
Therefore, one patch is subjected to 150V and the other patch to 75V . We measure the
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Figure 12: Electric potential - displacement curve of the antenna for the actuator usage
under symmetrical loading (a) and deflection for actuator usage under asymmetric loading
[150V/75V](b).

deformation of the antenna in z-direction around the circumference 6mm under the top edge.
Figure 12(b) shows the displacement curve dependent on the angle around the middle axis of
the antenna.

Parabolic antenna with piezoelectric segments
To enlarge the total displacements of the antenna Gupta [66] provides a parabolic antenna ge-
ometry with four piezoelectric actuator segments isochronously attached at the lower surface,
see Figure 13. The shell with the thickness t = 0.203mm has an elastic modulus E = 20·109 N

m2

Figure 13: Parabolic antenna with piezoelectric segments (a); Parabolic antenna in original
state and deformed system according to loading case 2 (b).

and a Poisson’s ratio ν = 0.3. The material data for the piezoelectric actuators correspond to
the parameters given in Table 3. The segments have an angle of 11.25◦ each. The geometry is
shown in Figure 14 as top view and as cut through the symmetry plane at AC. The geometry
of the antenna shell is characterized by the equation z = 7.5

17.52 (x
2 + y2) − 7.5. We model

the antenna with 64 elements in circumferential direction and 16 elements from the inner
hole to the top edge. According to the anchorage of the antenna by means of a screw in the
middle of the antenna shell, the displacement degrees of freedom at the inner hole are fixed.
Additionally, the rotation around the local z-axis at the hole and at the top edge is fixed.
The piezoelectric material is poled in thickness direction and is attached to the structure in a
way, that the polarization direction is set from outside to the inside of the shell. In order to
change the range of the antenna, we impress a voltage on the piezoelectric segments. Here,
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Figure 14: Geometry of the parabolic antenna.

we distinguish between the following loading cases

1. Δϕ = +300V for all actuator segments

2. Δϕ = +300V for the actuator segments at A and C
Δϕ = −300V for the actuator segments at B and D

3. Δϕ = +300V for the actuator segments at A and B
Δϕ = −300V for the actuator segments at C and D

The deformed system for the loading case 2 is depicted in Figure 13 (scaled by the factor 10).
The subfigures of 15 show the original state of the antenna and the deformed structure along
the axis AC and BD, respectively. For an easier evaluation of the deformation, we introduce
appropriate scaling factors, see Figure 15. For the loading case 1, the antenna completely
expands, whereas the total displacements are small. Thus, the whole range of the antenna
can be extended. The displacement in z-direction for the points A,B,C, and D is 0.715mm.
The loading case 2 enlarges the range in one axis and diminishes it perpendicular to this axis.
Here the displacement at the points A and C holds −4.860mm and at the points B and D
+4.860mm. A rotation of the antenna to the left hand side can be reached by the loading
of case 3. The displacement in z-direction of A and B counts −1.359mm and for C and D
+1.359mm. The result given by [66] for case 1 is a displacement of 0.7mm, for case 2 ±7.0mm
and for case 3 ±1.3mm.
The results of the loading cases 1 and 3 correspond very well to the data from the literature.
In case 2 there are deviations. This is potentially caused by the complex geometry or in the
differences of the formulation. The results in [66] correspond to a selective reduced eight node
element.
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Y

-

(a) Loading case 1 (A=B=C=D=300V), scaling factor 20; x = X + 20u.

(b) Loading case 2 (A=C=300V, B=D=-300V) , scaling factor 5; x = X + 5u.

(c) Loading case 3 (A=B=300V, C=D=-300V) , scaling factor 10; x = X + 10u.

Figure 15: Deformation of the parabolic antenna for the loading cases 1, 2 and 3 along the
axis AC and BD. ( ——– original state, – – – deformed state)
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7.5 Test of the Preisach model for ferroelectric hysteresis

In order to validate the results of the temperature-dependent Preisach model for the ferro-

3E~

a

a

a

Material data Preisach parameter
E = 6.0 · 109 N

m2 c = 100/π
ν = 0.34 fα = 50
e13 = −6.55 C

m2 fβ = 50
e33 = 23.3 C

m2 yα = 0.5
e15 = 0.0 C

m2 yβ = −0.5

ε11 = 2.77 · 10−8 C2

Nm2 Geometry

ε33 = 3.01 · 10−8 C2

Nm2 a = 0.001m
�Ec = 0.6 · 106 V

m
�Psat = 0.33 C

m2

Esat = 0.002

Figure 16: Geometry, material and Preisach parameter for the test specimen.

electric hysteresis effects, a simple material cube made of soft PZT with an edge length a,
see Figure 16, is chosen. This test specimen was introduced by Mauck and Lynch [36], to
depict the dielectric and the butterfly hysteresis for different temperatures. In [36], experi-
mental results are given for the polarization and the expansion behavior under an electric field
tested at the temperatures 25◦C (298K) and 100◦C (373K). Besides experimental results also
a micro-mechanical model is introduced in [36]. The formulation is based on the principles of
energy conservation and models the nonlinear behavior of polycrystal ferroelectric materials

e

(a) Dielectric hysteresis for 25◦C.

V mm

(b) Butterfly hysteresis for 25◦C.

Figure 17: Hysteresis curves for 25◦C

with a switching criterion that accounts for temperature effects. For the micro-mechanical
calculation, the material paramters in [36] are derived from the single crystal parameters of
barium titanate and are modified via a correction parameter to get the material parameter
of soft PZT single crystal. According to Reference [26], we choose the macroscopic material
parameter for soft PZT polychristals as given in Figure 16. We compare the numerical results
of the present formulation with the experimental data and the micromechanical model in [36].
Figure 17 presents the dielectric hysteresis and the butterfly hysteresis for a temperature of
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25◦C. Figure 17(a) shows that the dielectric hysteresis curve at 25◦C can be described very
well. For the strain hysteresis in 17(b) the reversible strains are slightly underestimated. How-
ever, the present formulation is not able to display the nonlinear reversible part but assumes
linear distributions. Whereas the micromechanical model does not reach the strain peaks in
the butterfly hysteresis, this can be managed well by means of the presented Preisach model.
Figure 18 depicts the hysteresis curves for a temperature of 100◦C. The dielectric hysteresis

present
experiment

Mauck/Lynch

(a) Dielectric hysteresis for 100◦C.

present
experiment

Mauck/Lynch

(b) Butterfly hysteresis for 100◦C.

Figure 18: Hysteresis curves for 100◦C

in Figure 18(a) shows the good accordance of the present formulation with the experimental
results in the region of the electric coercitive field. However above the saturation values the re-
versible part is underestimated. Here, the micro-mechanical model of Reference [36] achieves
better solutions. But for 100◦C it gets higher coercitive values, thus the hysteresis area and
thus the switching energy is overestimated. The differences in the reversible variables can also
be detected in the butterfly hysteresis in Figure 18(b). Analyzing Figure 18(b), one can see
that the hysteresis peaks are smaller in the experiment as in the numerical model. Thus we
conclude that also the saturation strains must change with temperature and become smaller
in this case. Due to a lack of sufficient experimental data in the literature for this aspect we
derive a linear relationship for the saturation strain, Esat = −9.333 · 10−3T [Kelvin] + 4.7813,
from the two depicted curves for 25◦C and 100◦C as first simplified approximation. Though
this assumption has to be verified by further experimental investigations. The model of
Mauck and Lynch can not display the peaks correctly. Furthermore they obtain the minima
for absolut values of the electric field which are too high.

7.6 Piezoelectric ceramic disc

A thin piezoelectric PZT ceramic disc is introduced by Yimnirun et al. [38] who gives exper-
imental results for the temperature-dependent polarization behavior, see Figure 19. The disc
with an outer diameter d1 and the thickness t is subjected to an electric field in thickness
direction for different temperatures in the range of 298 to 453 Kelvin. For the numerical cal-
culation we choose the three representative temperatures 298K, 373K and 453K. To simplify
the calculation, we additionally introduce a small hole at the disc center characterized by the
diameter d2, which lets the polarization change unaffected and thus does not influence the
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3E~
dd

t

2 1

Material parameter Preisach parameter
E = 5.9 · 109 N

m2 c = 25/π
ν = 0.34 fα = 12.5
e13 = −6.55 C

m2 fβ = 12.5
e33 = 23.3 C

m2 yα = 0.5
e15 = 17.0 C

m2 yβ = −0.5

ε11 = 1.5 · 10−8 C2

Nm2 Geometry

ε33 = 1.5 · 10−8 C2

Nm2 d1 = 8 · 10−3m
�Ec = 1.05 · 106 V

m
d2 = 0.5 · 10−3m

�Psat = 0.34 C
m2 t = 1 · 10−3m

Esat = 0.002

Figure 19: Geometry, material and Preisach parameter for the piezoelectric ceramic disc.

dielectric hysteresis curve. The geometry, the material parameters, and the Preisach parame-
ters are summarized in Figure 19. The missing parameters of the permittivity are added from
experienced data. Figure 20 shows the polarization behavior of the disc for 298K, 373K and
453K, respectively. With increasing temperature, the hysteresis curve becomes more compact
and the hysteresis area decreases. The coercitive electric field and the saturation polarization
are the same as in the experimental investigation of Yimnirun et al. [38], thus the switching

present
Yimnirun et al.

298K453K

373K

298K298K

Figure 20: Temperature dependent dielectric hysteresis.

processes can be displayed very well. However, the reversible polarization is underestimated
compared to the experiment and shows a nonlinear behavior. Due to the complex relation
this is not incorporated in the present model. For an exact description of the hysteresis curves
this has to be analyzed in further research.

7.7 Telescopic cylinder

The quite small displacements of piezoelectric structures can be enlarged by special archi-
tectures. With several nested cylinders, which are alternately connected at the top and the
bottom, actuators with much higher displacements and be composed. Alexander et al. [69]
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Geometry Material parameter Preisach parameter

h = 2.375 · 10−2m E = 60.6 · 109 N
m2 c = 25/π

t = 0.1 · 10−2m ν = 0.4 fα = 12.5
r1 = 0.275 · 10−2m e13 = −29.88 C

m2 fβ = 12.5
r2 = 0.425 · 10−2m e33 = 10.64 C

m2 yα = 0.5
r3 = 0.575 · 10−2m e15 = 27.26 C

m2 yβ = −0.5

r4 = 0.725 · 10−2m ε11 = ε33 = 1.0693 · 10−8 C2

Nm2

r5 = 0.875 · 10−2m �Ec = 0.8 · 106 V
m

�Psat = 0.49 C
m2

Esat = 0.002

Table 5: Geometry, material and Preisach parameter of the telescopic actuator.

introduce a telescopic actuator made of five cylinders, see Figure 21. It has a height of 25mm

Figure 21: Geometry and finite element discretization of the telescopic cylinder.

and an outer diameter of 18.5mm. The five cylinders have a thickness of t = 1mm each and
are alternately connected at the top and the bottom by a connective element with a thickness
of 2.5mm. At the top, the inner cylinder is closed by a 2.5mm thick plate with a small hole
in the center holding the radius ra = 0.275mm. The radii of the cylinders numerated from
the inner to the outer tube are r1, r2, r3, r4 and r5 and correspond to the middle surface
of every cylinder. The finite element discretization is shown in Figure 21. However, with
respect to the symmetry for the numerical calculation, only a quarter of the system with the
corresponding symmetry boundary conditions is modeled. The geometry, the material data,
and the Preisach parameters for the material nonlinear calculation are summarized in Table 5.
The cylinders are subjected to an electric potential in radial direction in such a way that the
cylinders alternately expand and shorten. The displacements at the lower edge of the outer
cylinder are fixed, thus the maximal displacement in z-direction w is measured at the hole in
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Alexander et al.
present

Figure 22: potential-displacement curve of the telescopic cylinder for actuator usage.

the middle of the top plate at the inner cylinder. In order to compare the numerical results
with the experimental data of Reference [69], an electric potential of −1200V is connected
to the structure, thus the material is fully poled. Afterwards, we run the load circle 0V ,
300V , −300V , 0V . With respect to the material nonlinear behavior, it results a hysteresis
curve for the maximal displacement w, which is displayed in Figure 22 together with the
experimental data from [69]. The good accordance of the remanent displacement due to the
initial loading by −1200V , read off for an electric potential of 0V , with the experiment and
the well representable subhysteresis for ±300V show the applicability of the introduced finite
shell formulation for the presented system. An open question is how the experimental results
reach the initial value of the remanent displacement again after −1200V for the first sub-
hysteresis ±300V . In [69] it seems that not until the second subcycle the estimated smaller
displacement is obtained, which does not accord with the description in Reference [29]. The
numerical results are almost identical to the analysis of [70], that is based on a continuum
element with an energy switching model.

8 Conclusions

In this paper, we have presented a piezoelectric finite shell element. The mixed hybrid formula-
tion includes independent thickness strains, which allows a consideration of three-dimensional
nonlinear constitutive equations. By means of a temperature-dependent Preisach model we
consider the actual polarization state and thus we incorporate ferroelectric hysteresis phenom-
ena. With only one electrical degree of freedom, the formulation simulates the behavior of
both piezoelectric sensor and actuator systems appropriately. The presented examples show
the influence of the temperature for the ferroelectric nonlinear behavior.
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